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What is an Adjoint model?
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Adjoint/Transpose

All the intermediate values computed in the 
forward run need to be stored for the adjoint run.

Machine learning prefers to 
call it back-propagation 
using the chain rule.



What is an Adjoint model?
Let’s expand dimensions:

𝜵!!𝐽 =
𝜕𝐽
𝜕𝒄"

=
𝜕𝐽"(𝒄𝒏)
𝜕𝒄"

+
𝜕𝐽"$%(𝒄𝒏$𝟏)

𝜕𝒄"
+⋯+

𝜕𝐽'(% 𝒄𝑵(𝟏

𝜕𝒄𝒏
+
𝜕𝐽' 𝒄𝑵

𝜕𝒄𝒏
= *

""*"

'
𝜕𝐽"" 𝒄𝒏"

𝜕𝒄"
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will impact all subsequent state vectors 
and the associated cost functions.
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What is an Adjoint model?

● A change in a constant model parameter 𝒑 will impact all state vectors 
(excluding initial conditions at 𝑛 = 0) and the associated cost functions.

● 𝑭𝒑" can be similarly defined as the Jacobian matrix between state vectors and 

model parameters, i.e., #$
!(𝒄𝒏)
#𝒑

.

From 𝜵!(𝐽 to 𝜵𝒑𝐽:

𝜵/𝐽 = (𝑭𝒑,)*𝜵!!𝐽 + (𝑭𝒑#)*𝜵!$𝐽 + ⋯+ 𝑭𝒑-0%
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Initialization

Iteration𝜵𝒑𝐽 = (𝐹𝒑"0#)*𝜵!"𝐽 + 𝜵𝒑𝐽

In a single step 𝑛, we simply need +2
!(𝒄𝒏)
+𝒄! , which are referred to as adjoint forcings as their role in the adjoint model is analogous to 

that of emissions in the forward model, as well as Jacobians 𝑭!"(% and 𝑭𝒑"(%, which need NOT to be stored for more than this step.



Adjoint model for sensitivity studies
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By re-writing 𝐽 = ∑𝒄∈* 𝒄, where 
Ω is the domain of time, space, 
and species, we are interested 
in the sensitivity of a scalar 
(e.g., regional loads of multiple 
air pollutants over a specific 
period) with respect to many 
model parameters 𝒑 (e.g., 
emissions).



Adjoint model for inversion studies
Linking the cost function to the Bayes’ Theorem:
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Additionally introducing a regularization parameter, which acts to control the weight given to the 
a priori relative to the observations, akin to specifying the strength of the priori in Bayesian terms.
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𝑝(𝒄456)

PriorPosterior Likelihood

Normalising 
constant

𝑝 and 𝑞 in 61 and 71 are the dimensionality of model and observation state vectors, respectively.



Adjoint model for inversion studies
Optimization flowchart
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GEOS-Chem Adjoint model

● Sensitivities: cheap, inversion: expensive
○ Sensitivities != Source apportionment
○ Adjoint requires an additional x2 CPU time

● Each application requires extra code development, some of which involves 
code validation (e.g., new emission inventories, chemistry, etc.)
○ The most recent adjoint model (v36) corresponds to GEOS-Chem v10

● Memory and I/O intensive
○ Memory usage ~x4 of standard
○ Forward model slower than standard owing to heavy I/O

Features and limitations



Bayes’ Theorem: 1-D example

Bayesianism: Variation of beliefs about 
parameters in terms of fixed observed data.

The right-hand figure illustrates a univariate case, 
where a single parameter follows a Gaussian 
distribution, and we iteratively update its a priori
distribution to its a posterior distribution given 
observed data. For a point estimate, we simply 
choose the parameter corresponding to the 
maximum a posteriori probability. For an interval 
estimate, we derive a region, such as [𝑎, 𝑏], that 
encompasses 1 − 𝛼 of the a posteriori
probability.



Bayes’ Theorem: 2/N-D example
The idea can be expanded to the multivariate joint distribution, where we have a series of 
parameter, each with its own distribution, and their joint distribution is given as 𝑝 𝝈 —
given a combination of each element in 𝝈, we have a probability. We similarly find the 
point/credible region corresponding to/surrounding the maximum probability in the a 
posteriori hyperplane.

An example of  joint 
distributions (e.g., Gaussian) 
involving two parameters, with 
the joint probability shown in 
the colour space.



Kalman Filter and its ensemble variant
When the a priori and likelihood are Gaussian, the a posteriori is also Gaussian. 
The Kalman Filter and its ensemble variant aim to compute and estimate the 
mean and covariance of the a posteriori, respectively. It iteratively updates these 
estimates as new data become available, using the current a posteriori as the 
new a priori to drive the next iteration.
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Frequentism versus Bayesianism
● Frequentism posits a single true parameter value, whereas Bayesianism views 

parameters as random variables with distributions, without claiming the existence of a 
single true posterior distribution. Instead, Bayesianism provides a framework for 
updating our beliefs about parameter distributions in light of new evidence. 

● In some cases, as more data are observed, the posterior distribution may converge to 
a stable distribution. This stable distribution represents the limit of our updated beliefs, 
combining prior information with observed data, rather than a single "true" distribution 
in an absolute sense. Consequently, the credible region, derived from the posterior 
distribution (𝑝 𝑎 < 𝝈 < 𝑏 𝒄345 = 1 − 𝛼), is simply a subset of the a posteriori 
distribution.

The frequentist/Bayesian divide is fundamentally a 
question of philosophy: the definition of probability.



MAP & 4DVar versus MLE & OLS
● The relationship between maximizing a posteriori (MAP) and minimizing the cost 

function in Bayesianism is analogous to the relationship between maximum likelihood 
estimation (MLE) and ordinary least squares (OLS) in frequentism. MLE is a special 
case of MAP when assuming a flat prior, where the prior does not influence the 
estimation. MAP is a generalization of MLE and reduces to MLE if we assume a non-
informative (uniform/flat) prior. The discrepancies in the cost function definitions 
explain these differences.

● What about ridge regression and LASSO? Adding a Gaussian and Laplace prior on the 
regression coefficients?



Data assimilation versus machine learning
● Outlook for Exploiting Artificial Intelligence in the Earth and Environmental 

Sciences (Boukabara et al., BAMS, 2021)



Improving the speed of running
● The time required to run a 

complete iteration, including 
both a forward and a backward 
run, has been reduced from 45 
minutes to less than half an 
hour.



GC Adjoint Checkpointing files
● We generally do not save Jacobians, as this would require a large amount of 

space. Instead, as shown in previous slides, both 𝐹+" and 𝐹," need NOT to be 
stored for more than a single step. However, we will need save all the 
intermediate values required for constructing Jacobians?



Sensitivity analysis of 𝜕𝑁𝑂!/𝜕𝑁𝑂"


