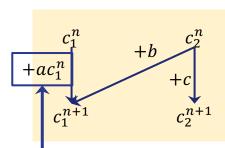
What is an adjoint model? And why you should care about it?

University of Edinburgh

Fei Yao Fei.Yao@ed.ac.uk

What is an Adjoint model?

Forward

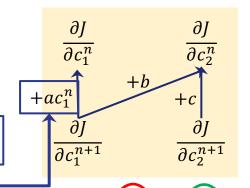


Assuming:

- $c_1^{n+1} = ac_1^n c_1^n + bc_2^n$
- $c_2^{n+1} = c c_2^n$
- I solely relies on c^{n+1}

All the intermediate values computed in the forward run need to be stored for the adjoint run.

Backward



 ∂c_1^{n+1}

 ∂c_2^n

$$\boldsymbol{F}_{c}^{n} = \begin{bmatrix} \frac{\partial c_{1}^{n+1}}{\partial c_{1}^{n}} & \frac{\partial c_{1}^{n+1}}{\partial c_{2}^{n}} \\ \frac{\partial c_{2}^{n+1}}{\partial c_{1}^{n}} & \frac{\partial c_{2}^{n+1}}{\partial c_{2}^{n}} \end{bmatrix} = \begin{bmatrix} 2ac_{1}^{n} & b \\ 0 & c \end{bmatrix}$$

Adjoint/Transpose

$$\begin{bmatrix} \frac{\partial J}{\partial c_{1}^{n}} \\ \frac{\partial J}{\partial c_{2}^{n}} \end{bmatrix} = \begin{bmatrix} \frac{\partial J}{\partial c_{1}^{n+1}} \frac{\partial c_{1}^{n+1}}{\partial c_{1}^{n}} + \frac{\partial J}{\partial c_{2}^{n+1}} \frac{\partial c_{2}^{n+1}}{\partial c_{1}^{n}} \\ \frac{\partial J}{\partial c_{2}^{n+1}} \frac{\partial J}{\partial c_{2}^{n+1}} + \frac{\partial J}{\partial c_{2}^{n+1}} \frac{\partial c_{2}^{n+1}}{\partial c_{2}^{n}} \end{bmatrix} = \begin{bmatrix} 2ac_{1}^{n} \\ b \end{bmatrix} \begin{bmatrix} 0 \\ c \end{bmatrix} \begin{bmatrix} \frac{\partial J}{\partial c_{1}^{n+1}} \\ \frac{\partial J}{\partial c_{1}^{n+1}} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{c}^{n} \end{bmatrix}^{T} \begin{bmatrix} \frac{\partial J}{\partial c_{1}^{n+1}} \\ \frac{\partial J}{\partial c_{1}^{n+1}} \end{bmatrix}$$

Machine learning prefers to call it back-propagation using the *chain rule*.

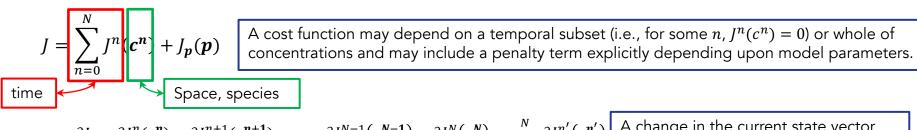
 ∂c_1^n

 ∂c_2^n

What is an Adjoint model?

Let's expand dimensions:

Adjoint forcings



$$\nabla_{c^n} J = \frac{\partial J}{\partial c^n} = \frac{\partial J^n(c^n)}{\partial c^n} + \frac{\partial J^{n+1}(c^{n+1})}{\partial c^n} + \dots + \frac{\partial J^{N-1}(c^{N-1})}{\partial c^n} + \frac{\partial J^N(c^N)}{\partial c^n} = \sum_{n'=n}^N \frac{\partial J^{n'}(c^{n'})}{\partial c^n}$$
A change in the current state vector will impact all subsequent state vectors and the associated cost functions.

 $\nabla_{c^{n}} J = \frac{\partial J^{n}(\boldsymbol{c^{n}})}{\partial \boldsymbol{c^{n}}} + (\boldsymbol{F_{c}^{n}})^{T} \frac{\partial J^{n+1}(\boldsymbol{c^{n+1}})}{\partial \boldsymbol{c^{n+1}}} + (\boldsymbol{F_{c}^{n}})^{T} (\boldsymbol{F_{c}^{n+1}})^{T} \cdots (\boldsymbol{F_{c}^{N-2}})^{T} \frac{\partial J^{N-1}(\boldsymbol{c^{N-1}})}{\partial \boldsymbol{c^{N-1}}} + (\boldsymbol{F_{c}^{n}})^{T} (\boldsymbol{F_{c}^{n+1}})^{T} \cdots (\boldsymbol{F_{c}^{N-2}})^{T} \frac{\partial J^{N}(\boldsymbol{c^{N}})}{\partial \boldsymbol{c^{N-1}}} \\ = \frac{\partial J^{n}(\boldsymbol{c^{n}})}{\partial \boldsymbol{c^{n}}} + (\boldsymbol{F_{c}^{n}})^{T} \left(\frac{\partial J^{n+1}(\boldsymbol{c^{n+1}})}{\partial \boldsymbol{c^{n+1}}} + \cdots + (\boldsymbol{F_{c}^{n+1}})^{T} \cdots (\boldsymbol{F_{c}^{N-2}})^{T} \frac{\partial J^{N-1}(\boldsymbol{c^{N-1}})}{\partial \boldsymbol{c^{N-1}}} + (\boldsymbol{F_{c}^{n+1}})^{T} \cdots (\boldsymbol{F_{c}^{N-2}})^{T} (\boldsymbol{F_{c}^{N-1}})^{T} \frac{\partial J^{N}(\boldsymbol{c^{N}})}{\partial \boldsymbol{c^{N}}} \right) \\ = \frac{\partial J^{n}(\boldsymbol{c^{n}})}{\partial \boldsymbol{c^{n}}} + (\boldsymbol{F_{c}^{n}})^{T} \nabla_{\boldsymbol{c^{n+1}}} J \cdots (\boldsymbol{F_{c}^{n+1}})^{T} \cdots (\boldsymbol{F_{c}^{N-2}})^{T} \frac{\partial J^{N-1}(\boldsymbol{c^{N-1}})}{\partial \boldsymbol{c^{N-1}}} + (\boldsymbol{F_{c}^{n+1}})^{T} \cdots (\boldsymbol{F_{c}^{N-2}})^{T} (\boldsymbol{F_{c}^{N-1}})^{T} \frac{\partial J^{N}(\boldsymbol{c^{N}})}{\partial \boldsymbol{c^{N}}} \right) \\ = \frac{\partial J^{n}(\boldsymbol{c^{n}})}{\partial \boldsymbol{c^{n}}} + (\boldsymbol{F_{c}^{n}})^{T} \nabla_{\boldsymbol{c^{n+1}}} J \cdots (\boldsymbol{F_{c}^{n+1}})^{T} \cdots (\boldsymbol{F_{c}^{N-2}})^{T} \frac{\partial J^{N-1}(\boldsymbol{c^{N-1}})}{\partial \boldsymbol{c^{N-1}}} + (\boldsymbol{F_{c}^{n+1}})^{T} \cdots (\boldsymbol{F_{c}^{N-2}})^{T} (\boldsymbol{F_{c}^{N-1}})^{T} \frac{\partial J^{N}(\boldsymbol{c^{N}})}{\partial \boldsymbol{c^{N}}} \right) \\ = \frac{\partial J^{n}(\boldsymbol{c^{n}})}{\partial \boldsymbol{c^{n}}} + (\boldsymbol{F_{c}^{n}})^{T} \nabla_{\boldsymbol{c^{n+1}}} J \cdots (\boldsymbol{F_{c}^{n+1}})^{T} \cdots (\boldsymbol{F_{c}^{N-2}})^{T} \frac{\partial J^{N-1}(\boldsymbol{c^{N-1}})}{\partial \boldsymbol{c^{N-1}}} + (\boldsymbol{F_{c}^{n+1}})^{T} \cdots (\boldsymbol{F_{c}^{N-1}})^{T} \frac{\partial J^{N}(\boldsymbol{c^{N}})}{\partial \boldsymbol{c^{N}}} \right) \\ = \frac{\partial J^{n}(\boldsymbol{c^{n}})}{\partial \boldsymbol{c^{n}}} + (\boldsymbol{F_{c}^{n}})^{T} \nabla_{\boldsymbol{c^{n+1}}} J \cdots (\boldsymbol{F_{c}^{n-1}})^{T} \cdots (\boldsymbol{F_{c}^{n-1}})^{T}$

What is an Adjoint model?

From $\nabla_{c}^{n}J$ to $\nabla_{p}J$:

- A change in a constant model parameter p will impact all state vectors (excluding initial conditions at n=0) and the associated cost functions.
- F_p^n can be similarly defined as the Jacobian matrix between state vectors and model parameters, i.e., $\frac{\partial F^n(c^n)}{\partial n}$.

$$\nabla_p J = (\boldsymbol{F_p^0})^T \nabla_{c^1} J + (\boldsymbol{F_p^1})^T \nabla_{c^2} J + \dots + (\boldsymbol{F_p^{N-2}})^T \nabla_{c^{N-1}} J + (\boldsymbol{F_p^{N-1}})^T \nabla_{c^N} J + \frac{\partial J_p}{\partial \boldsymbol{p}}$$
Initialization

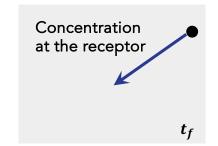
$$\nabla_p J = (F_p^{n-1})^T \nabla_{c^n} J + \nabla_p J$$
 Iteration

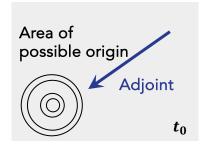
In a single step n, we simply need $\frac{\partial J^n(c^n)}{\partial c^n}$, which are referred to as adjoint forcings as their role in the adjoint model is analogous to that of emissions in the forward model, as well as Jacobians F_c^{n-1} and F_p^{n-1} , which need NOT to be stored for more than this step.

Adjoint model for sensitivity studies

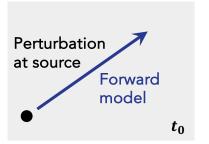
By re-writing $J = \sum_{c \in \Omega} c$, where Ω is the domain of time, space, and species, we are interested in the sensitivity of a scalar (e.g., regional loads of multiple air pollutants over a specific period) with respect to many model parameters p (e.g., emissions).

Adjoint Model (receptor-oriented)





Forward Model (source-oriented)





Adjoint model for inversion studies

Linking the cost function to the Bayes' Theorem:

$$p(\boldsymbol{\sigma}) = \frac{1}{(2\pi)^{\frac{p}{2}} |\boldsymbol{S}_{\sigma}|^{\frac{1}{2}}} \exp\{-\frac{1}{2} (\boldsymbol{\sigma} - \boldsymbol{\sigma}_{a})^{T} \boldsymbol{S}_{\sigma}^{-1} (\boldsymbol{\sigma} - \boldsymbol{\sigma}_{a})\}$$

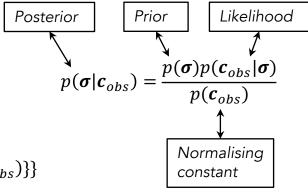
$$p(\boldsymbol{c}_{obs}|\boldsymbol{\sigma}) = \frac{1}{(2\pi)^{\frac{q}{2}} |\boldsymbol{S}_{obs}|^{\frac{1}{2}}} \exp\{-\frac{1}{2} (\boldsymbol{H}\boldsymbol{c} - \boldsymbol{c}_{obs})^{T} \boldsymbol{S}_{obs}^{-1} (\boldsymbol{H}\boldsymbol{c} - \boldsymbol{c}_{obs})\}$$

$$p(\boldsymbol{\sigma}|\boldsymbol{c}_{obs}) \propto \exp\{-\frac{1}{2}\{(\boldsymbol{\sigma}-\boldsymbol{\sigma}_a)^T\boldsymbol{S}_{\sigma}^{-1}\;(\boldsymbol{\sigma}-\boldsymbol{\sigma}_a)+(\boldsymbol{H}\boldsymbol{c}-\boldsymbol{c}_{obs})^T\boldsymbol{S}_{obs}^{-1}\;(\boldsymbol{H}\boldsymbol{c}-\boldsymbol{c}_{obs})\}\}$$

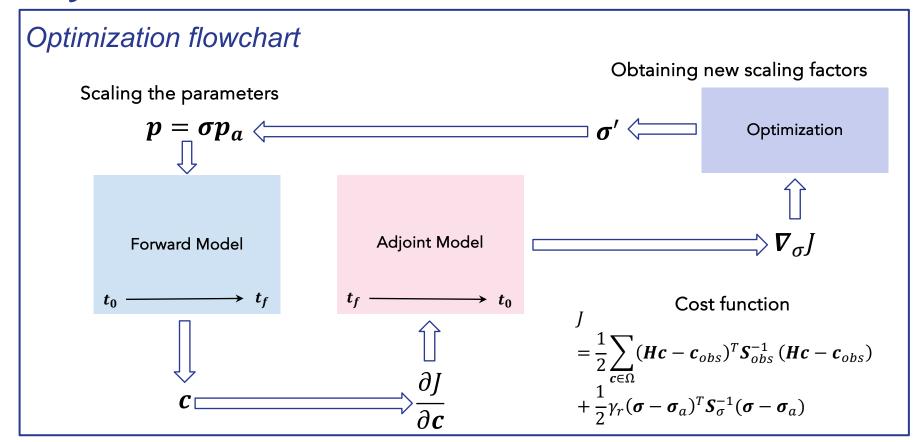
$$J = \frac{1}{2} \sum_{c \in \Omega} (\mathbf{H}\mathbf{c} - \mathbf{c}_{obs})^T \mathbf{S}_{obs}^{-1} (\mathbf{H}\mathbf{c} - \mathbf{c}_{obs}) + \frac{1}{2} \gamma_r (\boldsymbol{\sigma} - \boldsymbol{\sigma}_a)^T \mathbf{S}_{\sigma}^{-1} (\boldsymbol{\sigma} - \boldsymbol{\sigma}_a)$$

Additionally introducing a regularization parameter, which acts to control the weight given to the a priori relative to the observations, akin to specifying the strength of the priori in Bayesian terms.

p and q in $\frac{p}{2}$ and $\frac{q}{2}$ are the dimensionality of model and observation state vectors, respectively.



Adjoint model for inversion studies



GEOS-Chem Adjoint model

Features and limitations

- Sensitivities: cheap, inversion: expensive
 - Sensitivities != Source apportionment
 - Adjoint requires an additional x2 CPU time
- Each application requires extra code development, some of which involves code validation (e.g., new emission inventories, chemistry, etc.)
 - The most recent adjoint model (v36) corresponds to GEOS-Chem v10
- Memory and I/O intensive
 - Memory usage ~x4 of standard
 - Forward model slower than standard owing to heavy I/O

Bayes' Theorem: 1-D example

The right-hand figure illustrates a univariate case, where a single parameter follows a Gaussian distribution, and we iteratively update its a priori distribution to its a posterior distribution given observed data. For a point estimate, we simply choose the parameter corresponding to the maximum a posteriori probability. For an interval estimate, we derive a region, such as [a, b], that encompasses $1 - \alpha$ of the *a posteriori* probability.

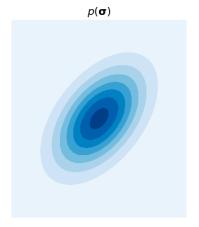


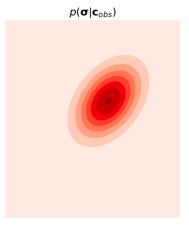
Bayesianism: Variation of beliefs about parameters in terms of fixed observed data.

Bayes' Theorem: 2/N-D example

The idea can be expanded to the multivariate joint distribution, where we have a series of parameter, each with its own distribution, and their **joint distribution** is given as $p(\sigma)$ — given a combination of each element in σ , we have a probability. We similarly find the point/credible region corresponding to/surrounding the maximum probability in the *a posteriori* **hyperplane**.

An example of joint distributions (e.g., Gaussian) involving two parameters, with the joint probability shown in the colour space.





Kalman Filter and its ensemble variant

When the *a priori* and likelihood are Gaussian, the *a posteriori* is also Gaussian. The Kalman Filter and its ensemble variant aim to compute and estimate the mean and covariance of the *a posteriori*, respectively. It iteratively updates these estimates as new data become available, using the current *a posteriori* as the new *a priori* to drive the next iteration.

$$p(\boldsymbol{\sigma}|\boldsymbol{c}_{obs}) \propto \exp\{-\frac{1}{2}\gamma_r\{(\boldsymbol{\sigma}-\boldsymbol{\sigma}_a)^T\boldsymbol{S}_{\sigma}^{-1}(\boldsymbol{\sigma}-\boldsymbol{\sigma}_a) + (\boldsymbol{H}\boldsymbol{c}-\boldsymbol{c}_{obs})^T\boldsymbol{S}_{obs}^{-1}(\boldsymbol{H}\boldsymbol{c}-\boldsymbol{c}_{obs})\}\}$$

$$p(\boldsymbol{\sigma}|\boldsymbol{c}_{obs}) = \frac{1}{(2\pi)^{p/2}|\boldsymbol{S}_{\sigma|c}|^{-1}} \exp\{-\frac{1}{2}(\boldsymbol{\sigma}-\boldsymbol{\sigma}_{post})^T\boldsymbol{S}_{\sigma|c_{obs}}^{-1}(\boldsymbol{\sigma}-\boldsymbol{\sigma}_{post})\}$$
Reorganize in the standard Gaussian form

$$S_{\sigma|c_{obs}} = (S_{\sigma}^{-1} + H^T S_{obs}^{-1} H)^{-1}$$

$$\sigma_{post} = S_{\sigma|c_{obs}} (S_{obs}^{-1} \sigma_a + H^T S_{obs}^{-1} c_{obs})$$

Given by GPT-40, NOT manually verified, but in any case...

$$\begin{split} \boldsymbol{S}_{\sigma|c_{obs}} &= (\boldsymbol{\gamma_r} \boldsymbol{S}_{\sigma}^{-1} + \boldsymbol{H}^T \boldsymbol{S}_{obs}^{-1} \boldsymbol{H})^{-1} \\ \boldsymbol{\sigma}_{post} &= \boldsymbol{S}_{\sigma|c_{obs}} (\boldsymbol{\gamma_r} \boldsymbol{S}_{obs}^{-1} \ \boldsymbol{\sigma}_a + \boldsymbol{H}^T \ \boldsymbol{S}_{obs}^{-1} \ \boldsymbol{c}_{obs}) \end{split}$$

Frequentism versus Bayesianism

- Frequentism posits a single true parameter value, whereas Bayesianism views
 parameters as random variables with distributions, without claiming the existence of a
 single true posterior distribution. Instead, Bayesianism provides a framework for
 updating our beliefs about parameter distributions in light of new evidence.
- In some cases, as more data are observed, the posterior distribution may converge to a stable distribution. This stable distribution represents the limit of our updated beliefs, combining prior information with observed data, rather than a single "true" distribution in an absolute sense. Consequently, the credible region, derived from the posterior distribution $(p(a < \sigma < b|c_{obs}) = 1 \alpha)$, is simply a subset of the a posteriori distribution.

The frequentist/Bayesian divide is fundamentally a question of philosophy: the definition of probability.

MAP & 4DVar versus MLE & OLS

- The relationship between maximizing a posteriori (MAP) and minimizing the cost function in Bayesianism is analogous to the relationship between maximum likelihood estimation (MLE) and ordinary least squares (OLS) in frequentism. MLE is a special case of MAP when assuming a flat prior, where the prior does not influence the estimation. MAP is a generalization of MLE and reduces to MLE if we assume a non-informative (uniform/flat) prior. The discrepancies in the cost function definitions explain these differences.
- What about ridge regression and LASSO? Adding a Gaussian and Laplace prior on the regression coefficients?

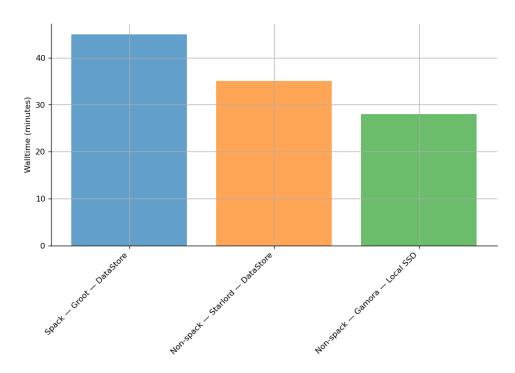
Data assimilation versus machine learning

 Outlook for Exploiting Artificial Intelligence in the Earth and Environmental Sciences (Boukabara et al., BAMS, 2021)

Machine learning		Data assimilation	
Concept	Notation or example	Concept	Notation or example
Labels	у	Observations	y°
Features	X	State	X
Neural network or other learned models	y' = W(x)	Physical forward model	y = H(x)
Objective or loss function	$J = (\mathbf{y} - \mathbf{y}')^{\mathrm{T}}(\mathbf{y} - \mathbf{y}') + J^{\mathrm{w}}$	Cost function	$J = [\mathbf{y}^o - H(\mathbf{x})]^{T} \mathbf{R}^{-1} [\mathbf{y}^o - H(\mathbf{x})] + J^b$
Network weights (W) regularization	$J^{w} = \mathbf{W}^{\mathrm{T}}\mathbf{W}$	Background state (\mathbf{x}^b) term	$J^b = (\mathbf{X} - \mathbf{X}^b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{X} - \mathbf{X}^b)$
		Error covariance matrices for observations and background state	R, B
Iterative gradient descent to find network weights W	E.g., stochastic gradient descent; gradient computed with back propagation	For variational DA: Iterative gradient descent to find most probable state x	E.g., conjugate gradient method; gradient computed with adjoint model

Improving the speed of running

 The time required to run a complete iteration, including both a forward and a backward run, has been reduced from 45 minutes to less than half an hour.



GC Adjoint Checkpointing files

• We generally do not save Jacobians, as this would require a large amount of space. Instead, as shown in previous slides, both F_c^n and F_p^n need NOT to be stored for more than a single step. However, we will need save all the intermediate values required for constructing Jacobians?

Sensitivity analysis of $\partial NO_2/\partial NO_x$