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What is an Adjoint model?
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What is an Adjoint model?

Let's exoand dimensions:
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A cost function may depend on a temporal subset (i.e., for some n, J™(c™) = 0) or whole of
concentrations and may include a penalty term explicitly depending upon model parameters.
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Adjoint forcings




What is an Adjoint model?

From V n] toV,]:

® A change in a constant model parameter p will impact all state vectors
(excluding initial conditions at n = 0) and the associated cost functions.

® F} can be similarly defined as the Jacobian matrix between state vectors and
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In a single step n, we simply need ]a‘f 2 , which are referred to as adjoint forcings as their role in the adjoint model is analogous to
that of emissions in the forward model, as well as Jacobians F?*~! and F5~ 1 which need NOT to be stored for more than this step.




Adjoint model for sensitivity studies

By re-writing J = ZC_EQ ¢, where Adjoint Model Forward Model
(1 is the domain of time, space,  (receptor-oriented) (source-oriented)

and species, we are interested
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Adjoint model for inversion studies

Linking the cost function to the Bayes’ Theorem.
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Additionally introducing a regularization parameter, which acts to control the weight given to the

a priori relative to the observations, akin to specifying the strength of the priori in Bayesian terms.

p andq in g and (21— are the dimensionality of model and observation state vectors, respectively.
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Adjoint model for inversion studies

Optimization flowchart

Obtaining new scaling factors
Scaling the parameters
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GEOS-Chem Adjoint model

Features and limitations

e Sensitivities: cheap, inversion: expensive
o Sensitivities = Source apportionment
o Adjoint requires an additional x2 CPU time

e Each application requires extra code development, some of which involves
code validation (e.g., new emission inventories, chemistry, etc.)
o The most recent adjoint model (v36) corresponds to GEOS-Chem v10

e Memory and I/O intensive

o Memory usage ~x4 of standard
o Forward model slower than standard owing to heavy 1/0



Bayes' Theorem: 1-D example

The right-hand figure illustrates a univariate case,
where a single parameter follows a Gaussian
distribution, and we iteratively update its a priori
distribution to its a posterior distribution given
observed data. For a point estimate, we simply
choose the parameter corresponding to the
maximum a posteriori probability. For an interval
estimate, we derive a region, such as [a, b], that
encompasses 1 — a of the a posteriori
probability.

m— p(O)
m— (Cobs|O)

— p(olcobs)

Bayesianism: Variation of beliefs about
parameters in terms of fixed observed data.




Bayes’ Theorem: 2/N-D example

The idea can be expanded to the multivariate joint distribution, where we have a series of
parameter, each with its own distribution, and their joint distribution is given as p(a) —
given a combination of each element in o, we have a probability. We similarly find the

point/credible region corresponding to/surrounding the maximum probability in the a
posteriori hyperplane.

plo) p(Cops|O) p(o|Cobs)

An example of joint
distributions (e.g., Gaussian)
involving two parameters, with
the joint probability shown in
the colour space.




Kalman Filter and its ensemble variant

When the a priori and likelihood are Gaussian, the a posteriori is also Gaussian.
The Kalman Filter and its ensemble variant aim to compute and estimate the
mean and covariance of the a posteriori, respectively. It iteratively updates these
estimates as new data become available, using the current a posteriori as the
new a priori to drive the next iteration.
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Frequentism versus Bayesianism

® Frequentism posits a single true parameter value, whereas Bayesianism views
parameters as random variables with distributions, without claiming the existence of a
single true posterior distribution. Instead, Bayesianism provides a framework for
updating our beliefs about parameter distributions in light of new evidence.

® |n some cases, as more data are observed, the posterior distribution may converge to
a stable distribution. This stable distribution represents the limit of our updated beliefs,
combining prior information with observed data, rather than a single "true" distribution
in an absolute sense. Consequently, the credible region, derived from the posterior
distribution (p(a < 6 < b|c,ps) = 1 — ), is simply a subset of the a posteriori
distribution.

The frequentist/Bayesian divide is fundamentally a
question of philosophy: the definition of probability.




MAP & 4DVar versus MLE & OLS

® The relationship between maximizing a posteriori (MAP) and minimizing the cost
function in Bayesianism is analogous to the relationship between maximum likelihood
estimation (MLE) and ordinary least squares (OLS) in frequentism. MLE is a special
case of MAP when assuming a flat prior, where the prior does not influence the
estimation. MAP is a generalization of MLE and reduces to MLE if we assume a non-
informative (uniform/flat) prior. The discrepancies in the cost function definitions
explain these differences.

® \What about ridge regression and LASSO? Adding a Gaussian and Laplace prior on the
regression coefficients?



Data assimilation versus machine learning

e Qutlook for Exploiting Artificial Intelligence in the Earth and Environmental
Sciences (Boukabara et al., BAMS, 2021)

Machine learning

Data assimilation

Concept Notation or example Concept Notation or example
Labels y Observations y°

Features X State X

Neutal network V' =WwX) Physical forward model y=H(X)

or other learned models

Objective or loss
function

7Network weights (w)
regularization

J=W-Y)(y-V)+JI

]W — wTW

Cost function

Background state (X?) term

Error covariance matrices for
observations and background state

J=ly* -HX)]R'[y° - HX)] +
JP= (X - x?)TB*(x — x?)

R.B

Iterative gradient descent
to find network weights w

E.g.. stochastic gradient descent;
gradient computed with back propagation

For variational DA: lterative gradient
descent to find most probable state X

E.g.. conjugate gradient method;
gradient computed with adjoint model




Improving the speed of running

e The time required to run a
complete iteration, including
both a forward and a backward
run, has been reduced from 45
minutes to less than half an
hour.
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GC Adjoint Checkpointing files

e We generally do not save Jacobians, as this would require a large amount of
space. Instead, as shown in previous slides, both F* and F' need NOT to be
stored for more than a single step. However, we will need save all the
intermediate values required for constructing Jacobians?



Sensitivity analysis of dN0O,/0ONO,



