A multidimensional comparison between MODIS and VIIRS AOD in estimating ground-level PM_{2.5} concentrations over a heavilypolluted region in China

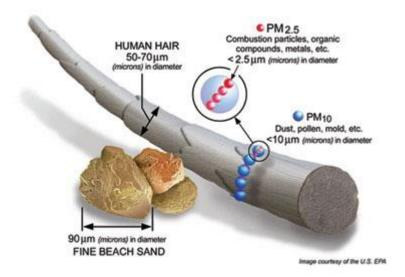
Fei Yao

School of Urban Planning and Design, Peking University

Shenzhen, China. 31st August, 2017

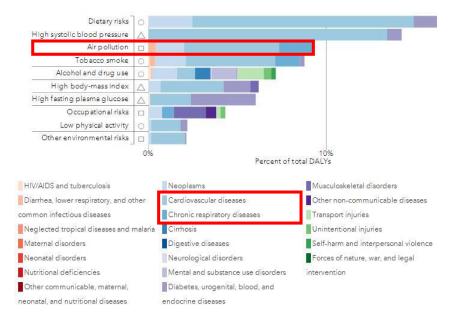
Contents

Part I	Introduction
Part II	Data & Methods
Part III	Results
Part IV	Discussion
Part V	Conclusions


Contents

Part I	Introduction
Part II	Data & Methods
Part III	Results
Part IV	Discussion
Part V	Conclusions

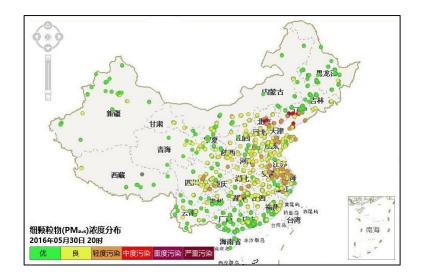
What is PM_{2.5} ?


• Particles with aerodynamic diameters of less than 2.5 µm.

Source: US MA

Adverse outcomes associated with PM_{2.5}

 Increasing cardiovascular- and respiratory-related morbidity and mortality according to plentiful epidemiological studies abroad (Pope et al. 2002; Dominici et al. 2006; Pope and Dockery 2006).


Source: http://www.healthdata.org/china

The significance of obtaining high accuracy, resolution and spatiotemporal coverage PM_{2.5} data

- Conducting environmental epidemiologic studies
- Design and perfect environmental management policies and standards.

Ground monitoring cannot achieve the goal

 Expensive operating costs -> Limited ground monitoring sites with uneven spatial distribution -> Hard to obtain high accuracy, resolution and spatiotemporal coverage PM_{2.5} data

Source: http://113.108.142.147:20035/emcpublish/

Satellite remote sensing technology provides the possibility

- Aerosol optical depth (AOD) is the most commonly used remote sensing parameter in satellite-based PM_{2.5} estimation models.
- A series of AOD products have been explored.

Sensor	Satellite	Retrieval algorithm	Spatial resolution	Lastest version	Remarks
		DT	10km 3km(C6)	C6	C5 has been applied mostly
MODIS	Terra/Aqua	DB	10km	C6	The accuracy of C6 is much higher than C5
		MAIAC	1km	trial version	Not yet global coverage
MISR	Terra	EOF	17.6km	V22	High prediction accuracy, however, long revisit period.
SeaWiFS	SeaStar	DB	13.5km	V004	Ended in Octobor, 2010 because of a mechanical trouble
VIIRS	Suomi-NPP	DT	6km/750m	beta version	An expansion and improvement of AVHRR and MODIS

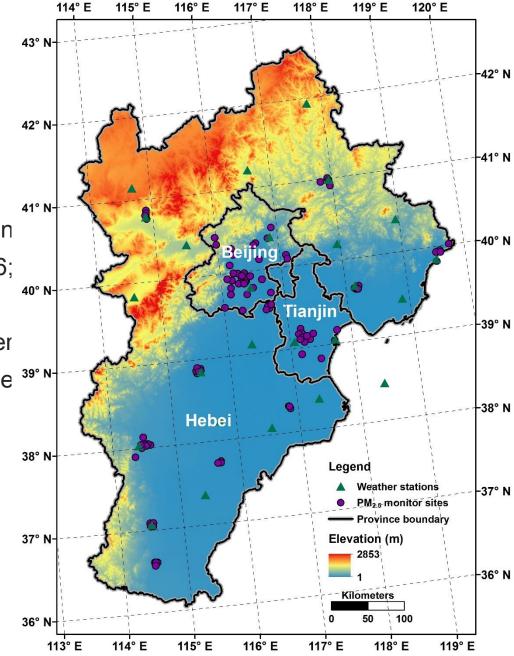
The necessity of comparing new VIIRS to MODIS

- MODIS AOD has been explored mostly due to its long time series of archived data (Chu et al., 2016).
- The VIIRS was designed and launched to address the issue that the MODIS is already working beyond its expected operation period.
- Despite previous studies have showed that both the MODIS and VIIRS AOD are suitable for estimating ground-level PM_{2.5} concentrations, few compared have compared their capacities.

Satellite remote sensing provides the possibility

 Thus, the objective of this paper was to compare the capability of 3 km MODIS AOD and 6 km VIIRS AOD in ground-level PM_{2.5} estimating from a multidimensional perspective.

Sensor	Satellite	Retrieval algorithm	Spatial resolution	Lastest version	Remarks
		DT	10km 3 <mark>km(C6)</mark>	C6	C5 has been applied mostly
MODIS	Terra/Aqua	DB	10km	C6	The accuracy of C6 is much higher than C5
		MAIAC	1km	trial version	Not yet global coverage
MISR	Terra	EOF	17.6km	V22	High prediction accuracy, however, long revisit period.
SeaWiFS	SeaStar	DB	13.5km	V004	Ended in Octobor, 2010 because of a mechanical trouble
VIIRS	Suomi-NPP	DT	<mark>6km</mark> /750m	beta version	An expansion and improvement of AVHRR and MODIS


Contents

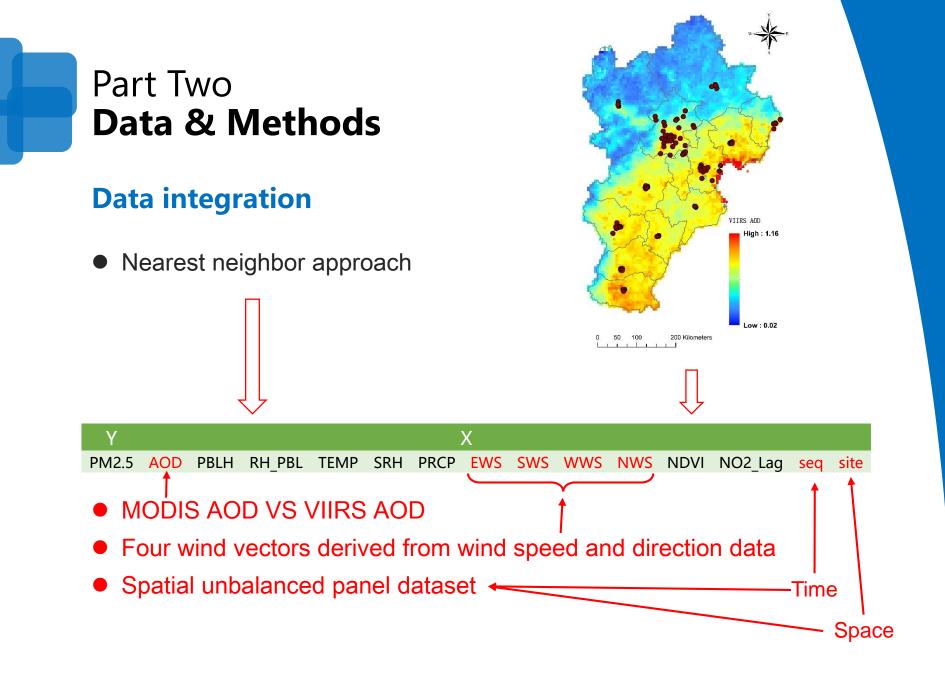
Part I	Introduction
Part II	Data & Methods
Part III	Results
Part IV	Discussion
Part V	Conclusions

Study Area

- A heavily polluted region in China (Ma et al. 2014, 2016; Wang et al. 2015).
- The southeast area had lower terrain and concentrated the ^{39° N-} main human activities.

Data collecting

• All the data were collected from the Internet.


Data	Туре	Spatial resolutions	Source
PM _{2.5}	Point	١	http://113.108.142.147:20035/emcpublish/ http://zx.bjmemc.com.cn/
Suomi-NPP VIIRS 6 km AOD	Raster	6 km	http://www.class.ngdc.noaa.gov/saa/products/welcome
Terra/Aqua MODIS 3 km AOD	Raster	3 km	https://ladsweb.nascom.nasa.gov/
Surface meteorolgical data	Point	λ	http://www.escience.gov.cn/metdata/page/index.html
Aerological data RH PBLH	Raster	1.25° × 1.25° 0.5° × 0.5°	http://disc.sci.gsfc.nasa.gov/
Satellite-derived NDVI	Raster	250 m	https://ladsweb.nascom.nasa.gov/
Satellite derived NO ₂	Raster	0.25° × 0.25°	http://www.temis.nl/index.php

Quality Assurance

• Comparison of MODIS and VIIRS QA data

	MODIS	VIIRS			
Flag	Quality	Flag	Quality		
0	Bad or No Confidence	0	Not Produced		
1	Marginal	1	Low		
2	Good	2	Medium		
3	Very Good	3	High		

- Model I: Terra/Aqua fused MODIS AOD with QA = 2, 3
- Model II: VIIRS AOD with QA = 3
- Model III: VIIRS AOD with QA =2, 3

Model development

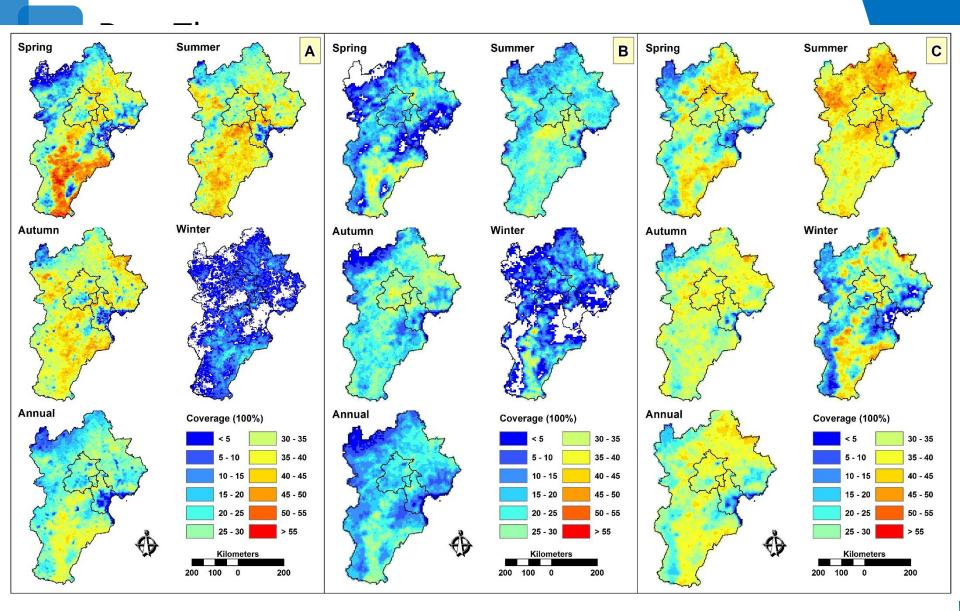
- Time fixed effects regression model
 - $\circ PM_{2.5,st} = \lambda_t + \beta_{AOD} * AOD_{st} + \beta_{PBLH} * PBLH_{st} + \beta_{RH_PBL} * RH_PBL_{st} + \beta_{TEMP} * TEMP_{st} + \beta_{SRH} * SRH_{st} + \beta_{PRCP} * PRCP_{st} + \beta_{EWS} * EWS_{st} + \beta_{SWS} * SWS_{st} + \beta_{WWS} * WWS_{st} + \beta_{NWS} * NWS_{st} + \beta_{NDVI} * NDVI_{st} + \beta_{NO_2_Lag} * NO_2_Lag_{st} + \varepsilon_{st}$

Model validation

- Statistical indicators
 - Coefficient of determination (R²)
 - Mean predication error (MPE)
 - Root-mean-square error (RMSE)
- Ten-folder cross validation

Contents

Part I	Introduction
Part II	Data & Methods
Part III	Results
Part IV	Discussion
Part V	Conclusions


Descriptive analysis

• Three aspects should be noted

- The maximum value and standard deviation of PM_{2.5} concentrations
- The ranges of MODIS and VIIRS AOD

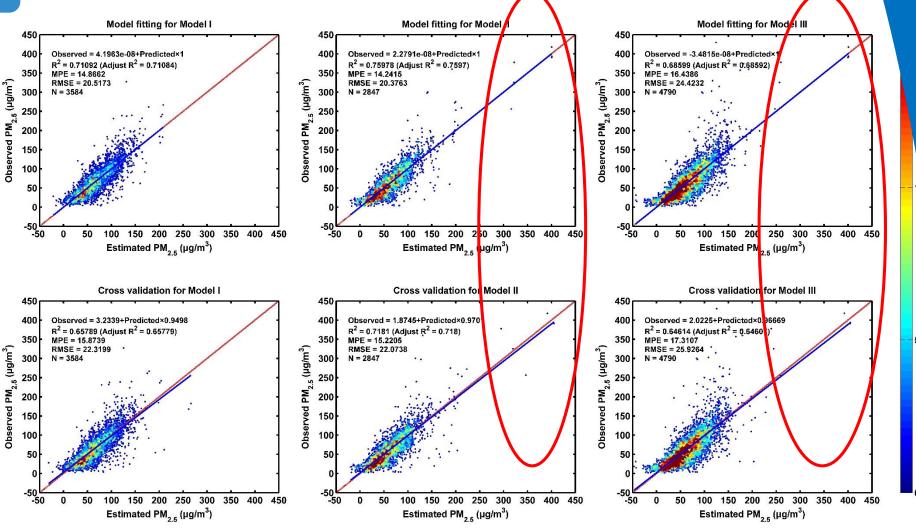
$\circ~$ The size of MODIS and VIIRS modelling data set

Variable	Model I (N = 3584, days = 162)			(N	Model II (N = 2847, days = 144)				Model III (N = 4790, days = 188)			
	Min	– 5564, Max	Mean	SD	Min	– 2047, (Max	Mean	SD	Min	Max	Mean	SD
PM _{2.5} (µg/m³)	2.33	327.22	65.45	38.17	2.33	417.74	61.45	41.58	2.00	429.59	61.45	43.59
AOD (Unitless)	0.00	3.98	0.83	0.55	0.01	1.92	0.56	0.43	0.00	1.93	0.53	0.44
TEMP (0.1 ° C)	-65.00	355.00	219.63	68.90	-101.00	318.00	203.35	85.17	-101.00	320.00	173.61	107.97
SRH (%)	12.00	90.00	50.81	14.90	12.00	90.00	51.84	14.07	9.00	90.00	48.72	15.73
PRCP (0.1 mm)	0.00	700.00	6.38	38.24	0.00	451.00	5.16	25.65	0.00	700.00	5.02	29.63
PBLH (m)	65.36	4661.76	1972.85	566.14	65.36	3634.31	1876.15	553.46	65.36	3682.31	1825.48	589.67
RH_PBL (Unitless)	0.09	0.86	0.37	0.16	0.09	0.85	0.37	0.15	0.09	0.86	0.35	0.15
NDVI (Unitless)	0.02	0.88	0.35	0.14	0.02	0.88	0.36	0.14	-0.03	0.88	0.32	0.15
NO ₂ Lag (10 ¹⁵ molec/cm ²)	0.14	53.43	11.77	7.57	0.56	83.47	11.96	8.70	0.56	83.47	12.71	10.50
WWS (0.1 m/s)	0.00	51.74	7.43	9.19	0.00	60.98	7.09	8.47	0.00	76.68	7.64	9.91
NWS (0.1 m/s)	0.00	47.12	4.82	8.98	0.00	57.00	5.28	9.38	0.00	64.35	6.74	10.63
EWS (0.1 m/s)	0.00	46.19	4.64	7.59	0.00	39.73	4.22	6.91	0.00	46.19	4.56	7.47
SWS (0.1 m/s)	0.00	39.73	8.95	9.14	0.00	39.73	8.17	8.53	0.00	54.51	7.24	8.73

A: Model I; B: Model II; C: Model III

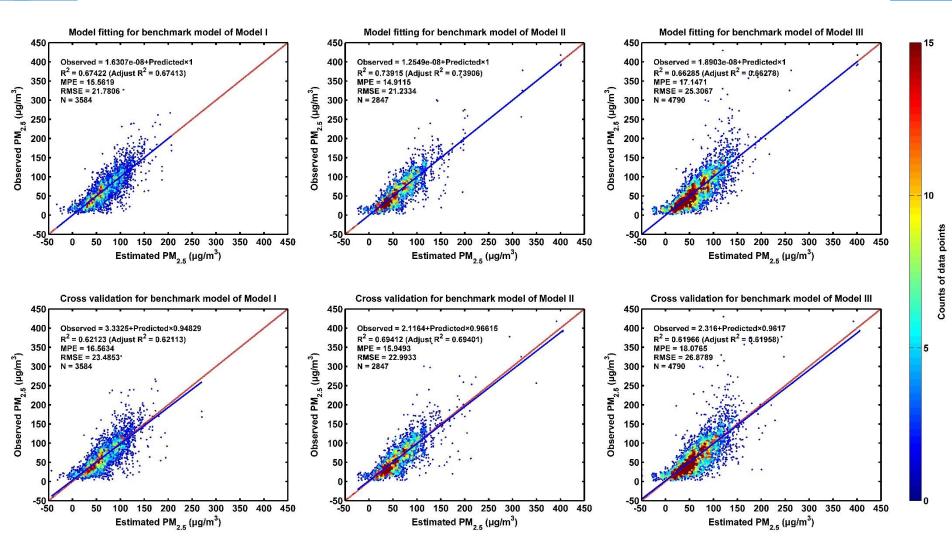
Spatiotemporal coverage of AOD

- Two aspects should be noted
 - The spatiotemporal coverage of high-quality AOD data
 - The improvement brought by the practice of including medium-quality AOD data


AOD Parameter	Spring Coverage	Summer Coverage		Winter Coverage	Annual Coverage
MODIS	29.16	33.06	32.89	4.78	25.06
VIIRS (QA = 3)	15.54	22.3	21.61	8.51	17.02
VIIRS (QA = 2, 3)	30.23	38.06	31.77	24.88	31.27

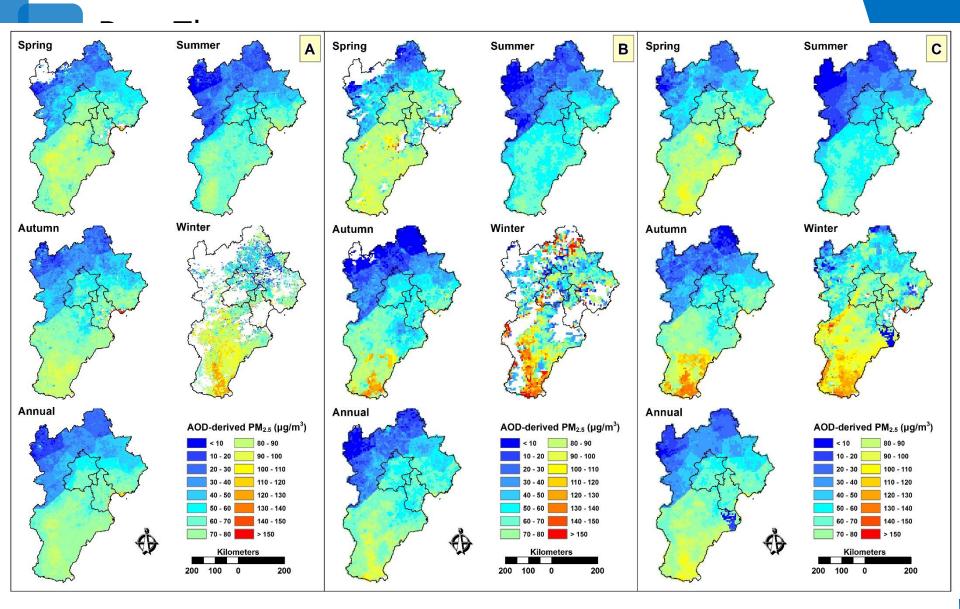
Model fitting

• The VIIRS model performed better than the MODIS model


- Signs and p-values of PBLH and NDVI variables
- Significance test of four wind vectors

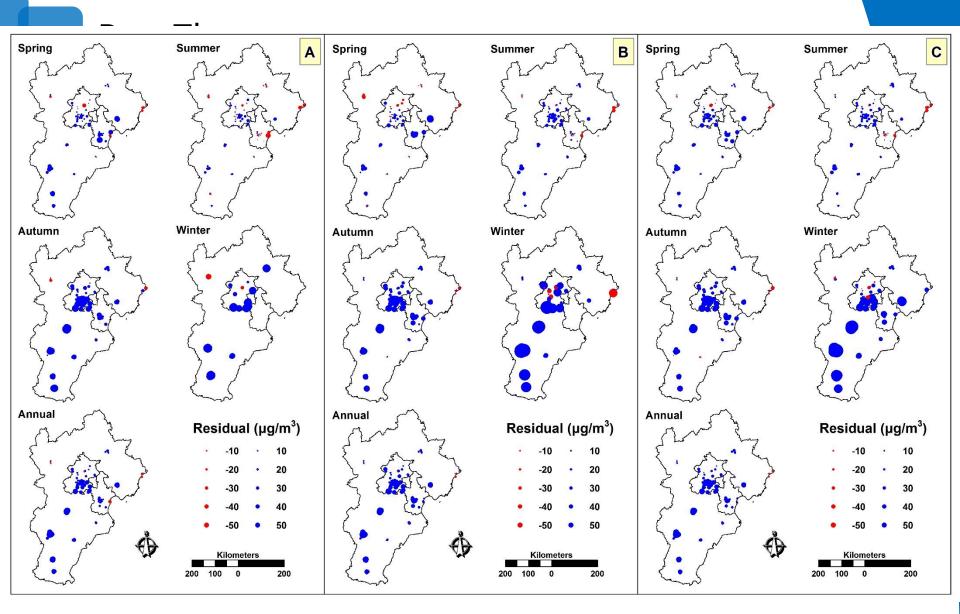
Variable	Model I					Model II				Model III			
	β	р	5%	95%	β	р	5%	95%	β	р	5%	95%	
AOD (Unitless)	26.513	0.000	24.014	29.011	23.880	0.000	20.800	26.959	26.591	0.000	23.756	29.427	
TEMP (0.1 ° C)	0.460	0.000	0.407	0.514	0.542	0.000	0.484	0.600	0.495	0.000	0.448	0.542	
SRH (%)	0.798	0.000	0.687	0.910	1.077	0.000	0.951	1.203	1.218	0.000	1.112	1.324	
PRCP (0.1 mm)	-0.035	0.003	-0.058	-0.012	-0.054	0.011	-0.096	-0.012	-0.044	0.004	-0.073	-0.014	
PBLH (m)	0.001	0.602	-0.002	0.003	-0.002	0.110	-0.005	0.001	-0.001	0.498	-0.003	0.002	
RH_PBL (Unitless)	-23.688	0.000	-34.584	-12.792	-26.147	0.000	-39.593	-12.701	-27.001	0.000	-38.857	-15.145	
NDVI (Unitless)	1.812	0.521	-3.727	7.350	-5.756	0.059	-11.725	0.214	-5.206	0.081	-11.051	0.639	
NO ₂ _Lag (10 ¹⁵ molec/cm ²)	0.376	0.000	0.251	0.501	0.127	0.079	-0.015	0.269	0.512	0.000	0.395	0.629	
WWS (0.1 m/s)	0.060	0.308	-0.055	0.175	-0.079	0.270	-0.221	0.062	0.070	0.212	-0.040	0.180	
NWS (0.1 m/s)	-0.122	0.057	-0.248	0.004	-0.342	0.000	-0.494	-0.191	-0.208	0.000	-0.321	-0.095	
EWS (0.1 m/s)	-0.044	0.510	-0.177	0.088	-0.291	0.001	-0.465	-0.117	-0.048	0.492	-0.186	0.090	
SWS (0.1 m/s)	-0.316	0.000	-0.432	-0.200	-0.242	0.002	-0.395	-0.089	-0.134	0.048	-0.267	-0.001	

Counts of doi

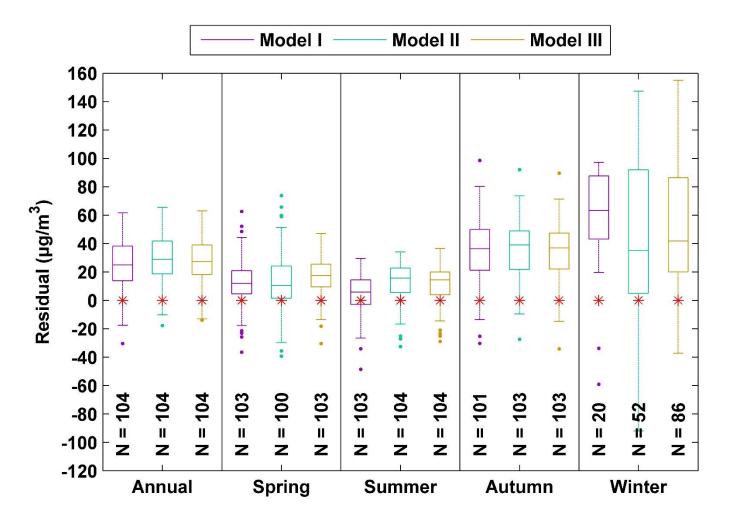

5

Model validation

- Comparison of Model I, II, III and their benchmark models
 - Employing AOD decreases the model over fitting degree by 5.16%, 10.05%, and 21.37% for Model I, II, and III.


Model	Model overfitting degree % (full model)	Model overfitting degree % (full model)
1	7.46	7.86
II	5.49	6.1
III	5.82	7.4

A: Model I; B: Model II; C: Model III


Ground-level PM_{2.5} mapping and evaluation

- Temporally, high in winter, low in summer, medium in spring and autumn; spatially, high in the southeastern area, low in the northwestern area.
- The spatiotemporal coverage PM_{2.5} estimates.
- The value size of PM_{2.5} estimates.

A: Model I; B: Model II; C: Model III

Ground-level PM_{2.5} mapping and evaluation

- Satellite-based annual or seasonal PM_{2.5} estimates underestimates the actual levels during the whole year and almost all seasons.
- We could infer that the VIIRS models outperformed the MODIS model with respect to annual and seasonal deviations to some degree.
- We should realize that the MODIS model outperforms the two VIIRS models in summer with respect to lower residuals.

Contents

Part I	Introduction
Part II	Data & Methods
Part III	Results
Part IV	Discussion
Part V	Conclusions

Part Four **Discussion**

Comparison between MODIS and VIIRS

- The VIIRS model had better model performances
 - The Model II performed best during model fitting and cross-validation with respect to significant variable numbers, signs and p values of variables, and model accuracy.
 - The seasonal estimates of ground-level PM_{2.5} from the Model III had the highest spatiotemporal coverage especially in winter.
 - Both the Model II and III could retrieve high PM_{2.5} concentrations and have lower model overfitting degrees, while the Model I did not.
- Two possible reasons
 - Different instrumental degradation
 - The design of the VIIRS

Part Four **Discussion**

Assessment of employing medium-quality VIIRS AOD

- The benefits of the AOD spatiotemporal coverage improvement outweighs the model accuracy decline significantly.
- the VIIRS model with medium-quality AOD performed comparably or even better than the MODIS model with respect to variable significance test, model overfitting degree, and annual and seasonal deviations.

Part Four **Discussion**

Deficiency of this study

- Failure to obtain the daily intercepts of PM_{2.5}-AOD relationships in those days without PM_{2.5}-ADO data matchups.
- No account for the spatial heterogeneity of the PM_{2.5}-AOD relationship.

Possible solutions

- Employment of nested time fixed effects regression model.
- Employment of spatiotemporal statistical regression model.

Contents

Part I	Introduction
Part II	Data & Methods
Part III	Results
Part IV	Discussion
Part V	Conclusions

Part Five Conclusions

Listed as below

- From the perspective of the accuracy and capacity of the model, the VIIRS models outperform the MODIS model.
- From the perspective of annual and seasonal PM_{2.5} estimates, the VIIRS models provide more estimates closer to actual levels.
- The VIIRS AOD is more suitable for epidemiological and urban studies, while the MODIS AOD could still have a role in regional source and transport studies.

