VIIRS-based remote sensing estimation of ground-level PM_{2.5} concentrations in Beijing-Tianjin-Hebei: A spatiotemporal statistical model

Part I	Introduction
Part II	Data & Methods
Part III	Results
Part IV	Discussion
Part V	Conclusions

Part I	Introduction
Part II	Data & Methods
Part III	Results
Part IV	Discussion
Part V	Conclusions

What is PM_{2.5} ?

• Particles with aerodynamic diameters of less than 2.5 µm

Source: US MA

Adverse outcomes associated with PM_{2.5}

Decreasing the visibility of the atmosphere (Tao et al. 2007; Liu et al. 2013)

Source: Sina Weibo

Adverse outcomes associated with PM_{2.5}

 Increasing cardiovascular- and respiratory-related morbidity and mortality (Pope et al. 2002; Dominici et al. 2006; Pope and Dockery 2006)

Source: http://www.healthdata.org/china

The significance of PM_{2.5} data collection

- Conducting environmental epidemiologic studies
- Drafting appropriate air pollution control polices

Two ways for PM_{2.5} data collection

• Ground monitoring

Source: http://113.108.142.147:20035/emcpublish/

Expensive operating costs

Two ways for PM_{2.5} data collection

- Using satellite-derived aerosol optical depth (AOD) to estimate
- Temporally- and spatially- full covered PM_{2.5} data collection is possible

Sensor	Satellite	Retrieval algorithm	Spatial resolution	Lastest version	Remarks
		DT	10km 3km(C6)	C6	C5 has been applied mostly
MODIS	MODIS Terra/Aqua	DB	10km	C6	The accuracy of C6 is much higher than C5
		MAIAC	1km	trial version	Not yet global coverage
MISR	Terra	EOF	17.6km	V22	High prediction accuracy, however, long revisit period.
SeaWiFS	SeaStar	DB	13.5km	V004	Ended in Octobor, 2010 because of a mechanical trouble
VIIRS	Suomi-NPP	DT	6km/750m	beta version	An explanation and improvement of AVHRR and MODIS

Two limitations of previous satellite related studies

 Previous studies used MODIS C5 and MISR AOD data mostly, however, their spatial resolutions are relatively coarse

Sensor	Satellite	Retrieval algorithm	Spatial resolution	Lastest version	Remarks
		DT	10km 3km(C6)	C6	C5 has been applied mostly
MODIS	MODIS Terra/Aqua		10km	C6	The accuracy of C6 is much higher than C5
		MAIAC	1km	trial version	Not yet global coverage
MISR	Terra	EOF	17.6km	V22	High prediction accuracy, however, long revisit period.
SeaWiFS	SeaStar	DB	13.5km	V004	Ended in Octobor, 2010 because of a mechanical trouble
VIIRS	Suomi-NPP	DT	6km/750m	beta version	An explanation and improvement of AVHRR and MODIS

• We will explore the performance of VIIRS AOD

Two limitations of previous satellite related studies

 Quantitative relationships between PM_{2.5} and AOD were built using statistical models mostly, however, these models rarely simultaneously considered the temporal and spatial variations of PM_{2.5}-AOD relationships

Statistical Models	Representatives	Temporal variations considered	Spatial variations considered
Simple linear model	Engel-Cox et al. 2004	No	No
Multiple linear regression model	Jia et al. 2014	No	No
Generalized linear regression model	Liu et al. 2005 Liu et al. 2007	No	No
Geographically weighted regression model	Hu et al. 2013 Song et al. 2014 Ma et al. 2014	No	Yes
Linear mixed effects model	Li et al. 2015	Yes	No
Generalized additive model	Liu et al. 2009	Yes	Yes
Two-stage model	Hu et al. 2014 Ma et al. 2016	Yes	Yes

• We will develop a spatiotemporal statistical model

Part I	Introduction
Part II	Data & Methods
Part III	Results
Part IV	Discussion
Part V	Conclusions

Data

• All the data were collected from the Internet

Data	Туре	Spatial resolutions	Source
PM _{2.5}	Point	١	http://113.108.142.147:20035/emcpublish/ http://zx.bjmemc.com.cn/
VIIRS AOD	Raster	6 km	http://www.class.ngdc.noaa.gov/saa/products/welcome
Surface meteorolgical data	Point	١	http://www.escience.gov.cn/metdata/page/index.html
Aerological data ^{RH} PBLH	Raster	1.25° × 1.25° 0.5° × 0.5°	http://disc.sci.gsfc.nasa.gov/daac- bin/FTPSubset.pl?LOOKUPID_List=MAI3CPASM
Satellite-derived NDVI	Raster	250 m	https://ladsweb.nascom.nasa.gov/data/search.html
Satellite derived NO ₂	Raster	0.25° × 0.25°	http://www.temis.nl/airpollution/no2col/no2regioomi_v2.php

Model development

• Stage I: Time fixed effects regression model

$$PM_{2.5,st} = Intercept_t + \beta_{AOD} * AOD_{st} + \beta_{TP} * TP_{st} + \beta_{SRH} * SRH_{st} + \beta_{RF} * RF_{st} + \beta_{PBLH} * PBLH_{st} + \beta_{RH_{PBLH}} * RH_{PBLH_{st}} + \beta_{NDVI} * NDVI_{st} + \beta_{NO2_{Lag}} * NO2_{Lag_{st}} + \beta_{TOE} * TOE_{st} + \beta_{TOS} * TOS_{st} + \beta_{TOW} * TOW_{st} + \beta_{TON} * TON_{st} + \varepsilon_{st}$$

Stage II: Geographically weighted regression model

$$\circ Residual_{ss'} = \beta_{0,s} + \beta_{AOD,s} * AOD_{ss'} + \varepsilon_{ss'}$$

Spatial variations

Temporal variations

Model development

• Stage I: Time fixed effects regression model

$$\begin{array}{l} \circ \ PM_{2.5,st} = Intercept_t + \beta_{AOD} * AOD_{st} + \beta_{TP} * TP_{st} + \beta_{SRH} * SRH_{st} + \\ \beta_{RF} * RF_{st} + \beta_{PBLH} * PBLH_{st} + \beta_{RH_{PBLH}} * RH_{PBLH_{st}} + \beta_{NDVI} * \\ NDVI_{st} + \beta_{NO2_{Lag}} * NO2_{Lag_{st}} + \beta_{TOE} * TOE_{st} + \beta_{TOS} * TOS_{st} + \\ \beta_{TOW} * TOW_{st} + \beta_{TON} * TON_{st} + \varepsilon_{st} \end{array}$$

• Stage II: Geographically weighted regression model

•
$$Residual_{ss'} = \beta_{0,s} + \beta_{AOD,s} * AOD_{ss'} + \varepsilon_{ss'}$$

• Spatial variations

Temporal variations

Final PM_{2.5}=PM_{2.5} from Stage I + Residual from Stage II

Model validation

- Statistical indicators
 - Coefficient of determination (R²)
 - Mean predication error (MPE)
 - Root-mean-square error (RMSE)
 - Residual spatial autocorrelation (Moran's I)
- Ten-folder cross validation

Part I	Introduction
Part II	Data & Methods
Part III	Results
Part IV	Discussion
Part V	Conclusions

Descriptive statistics

Model fitting – Time fixed effects regression model

Time fixed eff	ects regr	ession r	nodel
	b	P-value	Magnitude
Intercept*	40.813	0.000	
AOD(unitless)	26.499	0.000	50.778
TP(0.1°C)	0.514	0.000	213.919
SRH(%)	1.059	0.000	82.632
RF(0.1mm)	-0.048	0.003	-33.498
PBLH(m)	-0.004	0.004	-13.951
RH_PBLH(%)	-28.165	0.000	-21.421
NDVI(unitless)	-5.910	0.051	-4.843
NO ₂ _Lag (10 ¹⁵ molec/cm ²)	0.123	0.098	10.195
TOE(0.1m/s)**	-0.078	0.267	-3.651
TOS(0.1m/s)	-0.414	0.000	-23.582
TOW(0.1m/s)	-0.228	0.007	-9.903
TON(0.1m/s)	-0.215	0.005	-8.546

* Intercept of the first day

** Not significant

Insignificant time dummy variables at the α = 0.05 level
 Intercept differences between rest days and first day

Model fitting – Geographically weighted regression model

Model validation – Overfitting degree

R² decreased by 0.03883

R² decreased by 0.16412

Model validation – Residual spatial autocorrelation

Predication maps of PM_{2.5} concentrations

• PM_{2.5} concentrations among all prefecture-level cities

Beijing and Tianjin were in medium level

Part I	Introduction
Part II	Data & Methods
Part III	Results
Part IV	Discussion
Part V	Conclusions

Part Four **Discussion**

The novelty of methodology

Previous two-stage models often employed linear mixed effects model in their first stage while we employed time fixed effects regression model, which is computationally lighter and operationally easier for model calibration and prediction. And the model's performance was comparable or even better.

Part Four **Discussion**

The application of our work

- Our work is a demonstration of the method and can be extended to other regions but cautions should be paid on whether the region has the characteristic of urban-industrial conditions.
- We could also estimate PM_{2.5} concentrations of the past and near future if we assume that the spatiotemporal variations of PM_{2.5}-AOD relationship was constant in each year.

Part Four **Discussion**

The limitations of our work

- The deficiency of matched data records per day
- The data integration method is relatively simple

Possible solutions

- Seeking a trade-off between the minimum number of matched data records per day and the model's overfitting degree
- Adopting the mean value of some variables over a certain range from the monitoring site. Adopting spline interpolation for the meteorological data.

Part I	Introduction
Part II	Data & Methods
Part III	Results
Part IV	Discussion
Part V	Conclusions

Part Five Conclusions

Listed as below

- Time fixed effects regression model captured the temporal variations of PM_{2.5}-AOD relationships
- Geographically weighted regression model captured the spatial variations of PM_{2.5}-AOD relationships
- The ground-level PM_{2.5} concentrations were significantly affected by meteorological factors, land use characteristics, and other air pollutants
- The prediction maps revealed that fine particulate pollution in Beijing– Tianjin–Hebei is severe and the pollution pattern presents relatively strong seasonal heterogeneity and southeast–northwest spatial heterogeneity

