A model framework to reduce bias in ground-level $PM_{2.5}^{1}$ concentrations inferred from satellite-retrieved AOD

Fei Yao ¹ (<u>fei.yao@ed.ac</u> ¹ School of GeoSciences, University o	f Edinburgh, UK;	AOD:PM _{2.5} + co variabl	es PM _{2.5} inferred from AOD
² NCEO, University of Edinburgh, UK	Original met	thod Statistical Mach regression lear	nine Model of atmospheric ning chemistry and transport
Revised method			
Data clustering	Data suitability	Data-driven PM _{2.5} :AOD model development	Mapping PM _{2.5} from AOD
 GEOS-Chem model AOD for individual chemical components sampled at Chinese PM_{2.5} monitoring locations. Clustering algorithm to identify locations where PM_{2.5}:AOD varies coherently. 	 Within identified monthly data clusters calculate AOD_{PBL}:AOD_{TOTAL}. Identify threshold below which data are discarded. 	 Fit PM_{2.5}:AOD data using (2x) statistical models and (2x) machine learning models. Use Monte Carlo method to determine improvement in this approach with traditional approach. 	• Map PM _{2.5} inferred from AOD.

Results of data clustering and suitability

 We determine a total of 13 spatial clusters with similar extent across China. Among them the majority correspond to urban agglomerations.

• We define $\Gamma_{PBL}^{AOD} = \frac{AOD_{PBL}}{AOD_{TOTAL}}$ and determine 0.5 as the threshold, above which we retain the data to develop physically-meaningful PM_{2.5}:AOD relationships.

Results of data-driven model development

Benefiting from the improved representiveness of AOD for ground-level $PM_{2.5}$, the revised method:

- 1. reduces bias in inferred estimates of ground-level PM_{2.5} by 9-15%;
- 2. captures more variations in ground-level $PM_{2.5}$ by up to 8%.

Model structure: $PM_{2.5}{}_{g}^{d} = f(AOD_{g}^{d} + PBLH_{g}^{d} + RH_{PBL}{}_{g}^{d} + TS_{g}^{d} + PRECTOT_{g}^{d} + U10M_{g}^{d} + V10M_{g}^{d} + SLP_{g}^{d} + DOY_{g}^{d})$

		N	N	R^2	R^{2}	R^2_p	MPE	MPE	MPE_p
Satellite	Model								
Terra	PooledOLS	57819.0	36692.0	0.36	0.39	0.0	-0.48	-0.41	0.0
	PanelOL _S	57819.0	36692.0	0.58	0.58	0.0	-0.27	-0.24	0.0
	RF1	57819.0	36692.0	0.63	0.63	0.0	-0.32	-0.28	0.0
	RF2	57819.0	36692.0	0.68	0.66	0.0	-0.29	-0.26	0.0
Aqua	PooledOLS	55939.0	46961.0	0.43	0.45	0.0	-0.45	-0.41	0.0
	PanelOL S	55939.0	46961.0	0.64	0.66	0.0	-0.26	-0.23	0.0
	RF1	55939.0	46961.0	0.67	0.69	0.0	-0.31	-0.28	0.0
	RF2	55939.0	46961.0	0.73	0.73	0.0	-0.28	-0.25	0.0

X and X' denote statistics trained by the full (ignoring the step of data suitability) and suitable data. X_p denotes the possibility of achieving the performance no worse than ours by chance determined from a Monte Carlo simulation.

Results of ground-level PM_{2.5} mapping

Accordingly, we improve the seasonal ground-level $PM_{2.5}$ maps, e.g. the bias of the autumn (winter) mean of ground-level $PM_{2.5}$ estimates over Qinghai and Gansu (Shaaxi, Shanxi, and Henan) provinces reduces from -8% to -5% (11% to 6%).

