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Abstract

Differences between the actual ability to generate solar energy from

photovoltaic (PV) panels and the potential ability we denote as the solar

energy yield gap (SEYG). We focus on the role of atmospheric particulate

matter (PM) and PM deposited on PV panels, associated with domestic

and international trade, in influencing SEYGs by attenuating the sunlight

the panels receive. We quantify the source–receptor relationships of SEYGs

across Northeast Asia (NEA), including China, South Korea, and Japan.
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We estimate a SEYG of 33.6 TWh/yr due to the production of goods

and services across NEA in 2019. In contrast, the SEYG linked to the

consumption of goods and services is lower at 24.6 TWh/yr, with the 9

TWh/yr difference accounting for the net exports outside NEA. Imports

have only avoided a SEYG of 1.4 TWh/yr across NEA. Addressing regional

SEYGs requires a coordinated response from the producers and consumers

of goods and services.

Main

Rapidly transitioning from conventional to renewable energy sources is key to addressing

the linked challenges of air pollution and climate change, but it is increasingly recognized

that air pollution and climate change affect the supply and demand of renewable energy.1–4

Whether we continue this vicious cycle or transform it into a virtuous cycle depends on the

speed at which we transition away from carbon–based energy sources to meet growing energy

needs of the world’s population.

In this study, we examine the impacts of particulate matter (PM) on the functioning of

solar photovoltaic (PV) panels. Atmospheric PM significantly impacts solar energy gener-

ation by attenuating incoming light intercepted by the panels.5 PM can also be deposited

onto the PV panels, which also attenuates the incoming solar energy needed to excite the

electrons in the PV semiconductor material.6,7 Billions of dollars are lost every year in the

solar energy industry due to these PM impacts.8,9 Previous studies have focused on mit-

igating the solar energy generation losses by reducing PM emissions from anthropogenic

sectors,10–12 recognising that controlling natural sources of PM are more difficult to con-

trol. These anthropogenic PM emissions originate from producers of goods and services that

respond to changes in domestic and international consumer demands.13 This raises an im-

portant question about the extent to which domestic and international consumers should be

responsible for the resulting solar energy generation losses in the producing country. Here,
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we illustrate this challenge using trade across Northeast Aisa (NEA) China, South Korea,

and Japan that include some of the world’s largest economies and have suffered significant

environmental impacts14 partly associated with commerce.

To estimate and attribute the regional solar energy yield gap (SEYG) across NEA due

to PM emissions, we integrate models that describe regional trade fluxes that can be trans-

lated in PM emissions;15 atmospheric chemistry and transport that describe how PM evolves

in space and time;16 radiative transfer that describes how atmospheric and deposited PM

attenuate incoming sunlight;7,11,17 and a solar PV performance model18 that describes how

attenuated light from atmospheric and deposited PM affects SEYGs. We quantify SEYGs

using the difference between actual and potential maximum values, if excluding PM im-

pacts, based on the solar PV electricity generation. The solar PV electricity generation is

determined by combining solar PV efficiency described by capacity factors (CFs) – defined

as the ratio of a PV panel’s actual power output to its maximum possible output7,8,11 –

outputted from the integrated model with a satellite–derived solar PV installations data.19

We distinguish between the role of atmospheric and deposited PM, which we denote as PM

dimming and soiling, respectively.

Our experimental design allows us to examine the: 1) geographical distribution of solar

PV efficiency and how it is influenced by PM associate with trade; 2) country–level attribu-

tion of SEYGs across NEA due to domestic and international production and consumption

of goods and services; and 3) sensitivity of the SEYG estimates and attributions to the

cleaning of PV panels, either by rainfall or manual labour.

Solar PV efficiency and its modulation by PM associated with trade

Figure 1 shows solar PV efficiency and its losses (∆CFs) due to PM dimming and soiling for

flat, tilt, and one–axis tracking (OAT) panels across NEA, building on our previous work.11

Compared to the flat panels, tilt panels show increased solar PV efficiency in northern

high latitudes, and OAT panels show increased solar PV efficiency across the entire study
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domain. In contrast, losses in solar PV efficiency due to PM dimming and soiling exhibit

more consistent spatial patterns across the three types of panels, with the magnitude of losses

increasing progressively from flat to tilted to OAT panels. PM dimming primarily affects

northern and eastern China, China’s Sichuan Basin, and over the eastern Indo–Gangetic

Plain20 including Bangladesh, while PM soiling mainly impacts the Gobi Desert. PM soiling

in magnitude is comparable to PM dimming, except over the Gobi Desert, where it exceeds

double the maximum PM dimming observed in eastern China (0.11 versus 0.05). Given the

similar spatial patterns of solar PV efficiency losses due to PM pollution across the three

types of panels, and their attribution (in work not shown) to domestic and international

production and consumption of goods and services across NEA, we onwards focus on OAT

panels for the discussion of the results. These panels offer superior performance and closely

align with the satellite–derived solar PV installations data19 used in this work.

Figure 2 illustrates the grid–level attribution of solar PV efficiency losses in OAT panels

to domestic and international production and consumption of goods and services across NEA.

Generally, we find that PM emissions, irrespective of whether they are associated with the

production or consumption of goods and services, lead to the largest reductions in solar PV

efficiency in the country where the production or consumption occurs, with smaller impacts

over the immediately adjacent countries. PM emissions from the production of goods and

services in one country reduce solar PV efficiency in another country exclusively by atmo-

spheric transport, while solar PV efficiency losses in one country due to PM emissions from

the consumption of goods and services in another country are associated with atmospheric

transport of PM and with international trade. Figure 2, along with Supplementary Figure

1, shows that losses in solar PV efficiency are smaller from a consumption– rather than a

production–centric viewpoint, both for the three countries individually and for the upwind–

downwind relationships among them, including those from China to South Korea and Japan,

and from South Korea to Japan. An opposite pattern is observed for the "Others" category

and for the downwind–upwind relationships among the three countries, including those from
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Figure 1: Geographical distribution of annual mean solar PV efficiency (a,b,c) described by ca-
pacity factors (CFs) and its losses (∆CFs) due to PM pollution (d,e,f), including PM dimming
(g,h,i) and soiling (j,k,l), for flat (a,d,g,j), tilt (b,e,h,k), and one-axis (c,f,i,l) tracking panels
over Northeast Asia in 2015. Scales are different for the first and subsequent rows.

Japan to South Korea and China, and from South Korea to China. This contrast suggests

narrower gaps in mutual contributions to solar PV efficiency losses from a consumption–

rather than a production–centric perspective among China, South Korea, and Japan, which

are all significantly influenced by the net exports of goods and services outside NEA. The

differences between losses in solar PV efficiency due to PM dimming and soiling are generally

small (Supplementary Figure 2), except over the Gobi Desert, where natural sources of PM

result in significant levels of PM soiling that are not correlated with either the production

or consumption of goods and services.

5



DRAFT
Figure 2: Geographical distribution of annual mean solar PV efficiency losses (∆CFs) in OAT panels
due to PM pollution (a-h), including PM dimming (i-p) and soiling (q-x), associated with emissions
produced in (a-d,i-l,q-t) or induced by consumption (e-h,m-p,u-x) in China (a,e,i,m,q,u), South
Korea (b,f,j,n,r,v), Japan (c,g,k,o,s,w), and "Others" (d,h,l,p,t,x) over Northeast Asia in 2015.
Note that "Others" encompasses contributions from other countries and other natural sources of
PM, but the latter cancels out when subtracting production–based results from consumption–based
results, leaving only the contributions from net exports outside Northeast Asia. Scales are different
for each column.

Attribution of PM–related SEYGs to the production and consump-

tion of goods and services

Figure 3 shows a numerical breakdown of the country–level SEYG due to transboundary PM

pollution in terms of the production and consumption of goods and services across NEA.
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As we have seen in the analyses of solar PV efficiency losses, we find that consumption–

based SEYG values are smaller than production–based values, both for the three countries

individually and for the upwind–downwind relationships among them, including those from

China to South Korea and Japan, and from South Korea to Japan. This is reflected by

the negative differences shown in the diagonal and upper triangular parts of the heatmaps

in Figure 3g-i. Conversely, a reversed pattern is observed for the "Others" category and

for the downwind–upwind relationships among the three countries, including those from

Japan to South Korea and China, and from South Korea to China. This is reflected by

the positive differences shown in the lower triangular parts of the heatmaps in Figure 3g-

i. The differences between the consumption–based and production–based SEYG values are

statistically significant (Supplementary Figure 3), highlighting closer interdependence among

China, South Korea, and Japan in their mutual contributions to solar PV efficiency losses

from a consumption– rather than a production–centric standpoint, as well as the important

role of net exports of goods and services outside NEA in determining the SEYG values

across the region. Although we continue to observe similar contrasting patterns between

PM dimming and soiling in consumption– and production–based SEYG values (Figure 3j,k),

these patterns become slightly more noticeable as a result of aggregation. Nonetheless,

our immediate focus is on reducing their combined impacts rather than addressing them

individually.

Figure 3a-c further illustrates that China plays the largest role in determining production-

based SEYGs in China, South Korea, and Japan (for PM soiling only). In contrast, Fig-

ure 3d-f reveals consumption-based SEYGs primarily driven by the "Others" category in

these three countries. Additionally, China causes more production– than consumption–based

SEYGs in NEA, whereas the opposite is true for South Korea, Japan, and the "Others" cat-

egory. Of the total 33.6 TWh/yr SEYG in NEA resulting from the production of goods and

services across the region, about 3.4% (1.1 TWh/yr) is related to the production of goods

and services in a different NEA country from where the SEYG occurred. In contrast, of
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Figure 3: Contributions from source countrys’ production– (a-c) and consumption–related (d-f)
emissions to receptor countrys’ solar energy energy yield gaps (SEYGs) attributable to PM pollution
(a,d), including PM dimming (b,e) and soiling (c,f). Each cell in the grid shows the proportion
of SEYGs that occurred in the country indicated by the column due to emissions produced in or
induced by consumption in the country indicated by the row, wherein the consumption stimulates
emissions domestically and elsewhere. The diagonal thus reflects the proportion of SEYGs in a
country due to emissions produced in or induced by consumption within the same country. At the
top, the total SEYGs (GWh/yr) occurred in each country are presented, while on the right, the
total SEYGs (GWh/yr) in the three countries (aka Northeast Asia) caused by emissions produced
in or induced by consumption in each country are outlined. Notably, the sum of the numbers at
the top equals the sum at the right. g-i, Differences between consumption– and production–related
results. j,k, Differences between PM soiling and dimming.

the total 24.6 TWh/yr SEYG in NEA due to consumption of goods and services across the

region, about 5.0% (1.2 TWh/yr) is related to the consumption of goods and services in

a different NEA country from where the SEYG occurred. All these findings indicate that,
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when considering trade, the responsibility for SEYGs in NEA is more evenly distributed

among China, South Korea, Japan, and other regions.

Figure 4 and our broader analysis (Supplementary Figures 4 – 6) result in the same

conclusion: the SEYGs from PM dimming and soiling due to emissions produced in a country

are primarily driven by consumption within that country, followed by consumption elsewhere.

Of the total 33.6 TWh/yr SEYG across NEA due to PM dimming and soiling associated with

emissions in NEA, about 23% (7.7 TWh/yr) is related to consumption outside NEA. When

we break this regional estimate into country values we find for China, South Korea, and

Japan that 23% (7.3 TWh/yr out of 32.3 TWh/yr), 25% (0.1 TWh/yr out of 0.4 TWh/yr),

and 22% (0.21 TWh/yr out of 0.96 TWh/yr), respectively, can be attributed to consumption

outside of NEA. Countries outside of NEA contributing to this consumption likely include

the United States, the European Union (e.g., Germany), and other Asian countries (e.g.,

India) (Supplementary Figure 7), though we have not quantified their specific contributions.

The differences between SEYGs due to emissions linked to goods and services ultimately

consumed in a country/region and those linked to goods and services produced in a coun-

try/region, as shown in Figure 3g-i, reflect the impact of net imports on a country/region’s

solar energy generation. Using the SEYGs associated with a country/region’s exports, as

illustrated in Figure 4, we can easily derive the SEYGs embodied in exports versus imports

across NEA, which we summarise in Table 1. Overall, NEA acts primarily as a net exporter,

with exports accounting for up to 7.7 TWh/yr of SEYGs in 2019, while imports only offset

1.4 TWh/yr of SEYGs in the same year.

PM–related SEYGs’ attributions mostly insensitive to rainfall and

panel cleaning practices

Previous work has highlighted the significant benefits of rainfall and panel cleaning practices

in reducing SEYGs due to PM pollution.7,11 To investigate the potential impact of these

mitigation strategies on the source–receptor relationships of SEYGs across NEA, we rerun
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Figure 4: Contributions of production–related emissions from China (a-c), South Korea (d-f), and
Japan (g-i) to solar energy yield gaps (SEYGs) in Northeast Asia due to PM pollution (a,d,g),
including PM dimming (b,e,h) and soiling (c,f,i), further broken down to compoments linked to
consumption in these countries and elsewhere. Each cell in the grid shows that proportion of SEYGs
that occurred in the country indicated by the column due to emissions produced in a Northeast
country that are induced by consumption in the country indicated by the row. The diagonal
thus reflects the proportion of SEYGs in a country due to emissions produced in and induced by
consumption within the same country. At the top, the total SEYGs (GWh/yr) occurred in each
country due to emissions produced in a Northeast country are presented, while on the right, the
total SEYGs (GWh/yr) in the three countries caused by emissions produced in a Northeast country
that are induced by consumption in each country are outlined. Notably, the sum of the numbers
at the top equals the sum at the right.
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Table 1: Solar energy yield gaps (SEYGs, GWh yr−1) embodied in imports versus exports across
Northeast Asia in 2019. Net imports are derived by contrasting scenarios 5–7 with scenarios 2–
4. Exports are derived using scenarios 8–16. Imports are derived as the sum of exports and net
imports.

China South Korea Japan Northeast Asia

SEYGs due to PM pollution associated with
Exports 7726.23 34.82 48.26 7652.53
Imports -1350.71 -1.18 2.56 -1408.92
Net imports -9076.94 -36.00 -45.70 -9061.45

SEYGs due to PM dimming associated with
Exports 3667.56 18.48 34.60 3694.75
Imports -620.98 0.04 1.29 -671.73
Net imports -4288.54 -18.44 -33.31 -4366.48

SEYGs due to PM soiling associated with
Exports 4058.67 16.34 13.65 3959.39
Imports -729.73 -1.23 1.26 -735.59
Net imports -4788.41 -17.56 -12.39 -4694.98

all our calculations by excluding the role of rainfall and incorporating the panel cleaning

practice, respectively, and compare the results with those from the baseline run described

earlier. We expect based on previous work that these changes will affect mostly PM soiling.

For brevity, we present only country–level results Supplementary Figures 8–11. We find that

the rainfall and the frequency that panels are cleaned result in larger reductions in SEYGs,

as expected. Nonetheless, we find differences between the sets of reruns and the baseline run

are typically within ±15% for scenarios 2–7 and ±5% for scenarios 8–16. Consequently, the

source–receptor relationships across NEA, determined by changes in meteorology, remain

consistent with the baseline calculations. Similarly, the main conclusions reached from the

baseline calculations remain unchanged.

Policy implications and concluding remarks

A wide range of environmental21–30 and social31–35 impacts embodied in trade have been

assessed from a consumption perspective. Our work is the first to extend this perspective

to include large SEYGs attributable to PM pollution. Our work is timely because of the

rapid expansion of solar energy projects in the region to meet growing energy demands and

to achieve carbon neutrality.

Our focus on SEYGs due to PM pollution shares concepts and methods with previous

studies, particularly those examining PM–related health impacts. Balancing trade–offs and
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synergies among different environmental and social impacts presents significant challenges

for policymakers. Nonetheless, our and previous work can play a crucial role in timely

evaluating and monitoring the effectiveness of existing policies and suggesting relevant mod-

ifications. These trade–related policies may include, but are not limited to: (1) adjustments

of border taxes and tariffs, such as the European Union’s Carbon Border Adjustment Mech-

anism; (2) widening of technical and environmental standards to help reduce domestic and

outsourced environmental impacts; (3) transfer of technology to help circumvent avoidable

environmental impacts; and (4) interventions aimed at curbing unnecessary, unsustainable

consumption.36 These policies, by design, should help reduce SEYGs due to PM pollution,

as well as other environmental and social impacts. However, the implementation of these

and other policies should never be expected to be straightforward due to the many obstacles

throughout. Our work, along with similar studies, can help policymakers navigate these

obstacles by providing a comprehensive understanding of the environmental and social im-

pacts of trade, including SEYGs due to PM pollution. Ultimately, we aim to maximise

the benefits of trade, such as the employment opportunities generated, while minimising its

negative impacts on the environment and society, achieving the decoupling of these impacts

from economic growth.

Methods

We take four steps to estimate SEYGs due to transboundary PM pollution associated with

trade across NEA (Supplementary Figure 12). First, we use a multi–regional input–output

model15 to track the flow of goods and services among China, South Korea, and Japan, and

thereby the associated emissions responsible for transboundary PM pollution. Second, we use

the GEOS–Chem chemical transport model16 to simulate the PM levels in the atmosphere

and on solar panels, the latter of which is further modulated by rainfall and panel cleaning

practices. The built–in radiative transfer module in GEOS–Chem,17 alongside a custom
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approach governing how solar radiation is reduced by PM accumulation on solar panels,7,11

allows us to estimate the final solar radiation that reaches the solar cells. Third, we use

the PVLIB–Python model18 to estimate the solar PV efficiency of three widely used solar

panel configurations: horizontal fixed (Flat), fixed with optimal tilt (Tilt), and one–axis

tracking (OAT), though we primarily report results for OAT panels, as per reasons previously

explained. Finally, we integrate the modelled solar PV efficiency with satellite–derived solar

PV installation data19 to estimate the solar PV electricity generation and its losses (aka

SEYGs) due to transboundary PM pollution associated with trade across NEA. We give

detailed descriptions of these steps in the Supplementary Methods.

Our previous work11 has extensively evaluated the performance of the integrated model

against a range of in situ measurements of various PM–related variables, and we provide in

the Supplementary Methods an additional evaluation of the model’s performance in relation

to ground measurements of the lumped PM2.5 (PM with an aerodynamic diameter ≤ 2.5 µm)

and its major chemical components, including sulfate, nitrate, ammonium, black carbon,

and organic carbon, across NEA, reflecting updates in emission inputs. We find that the

integrated model continues to perform reasonably well, though there remains some room

for improvement. However, these areas for improvement do not impact the accuracy of

quantifying source-receptor relationships for SEYGs across NEA in terms of self and mutual

percentage contributions, as uncovered in this study.

We design a total of 16 major scenarios (Supplementary Table 1), each with three sub–

scenarios (Supplementary Table 2), to attribute losses in solar PV efficiency (referred to

as ∆CFs)and consequently, solar PV electricity generation (referred to as SEYGs)to trans-

boundary PM pollution associated with trade across Northeast Asia. For each major sce-

nario, its three subscenarios help isolate ∆CFs and SEYGs associated with PM dimming

(e.g., ∆CFDimming = CFNOSoiling
NODimming − CFNOSoiling

Dimming ), soiling (e.g., ∆CFSoiling = CFNOSoiling
Dimming −

CFSoiling
Dimming), and a combination of the two (e.g., ∆CFDimming+Soiling = ∆CFDimming +

∆CFSoiling = CFNOSoiling
NODimming−CFSoiling

Dimming). Using a zero–out approach,37 scenarios 2–4 decom-
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pose ∆CFs and SEYGs into components associated with emissions produced in China, South

Korea, Japan, and elsewhere, e.g., ∆CFS1
Dimming+Soiling = ∆CFS1−S2

Dimming+Soiling+∆CFS1−S3
Dimming+Soiling+

∆CFS1−S4
Dimming+Soiling + ∆CFRemaining

Dimming+Soiling. Similarly, scenarios 5–7 decompose ∆CFs and

SEYGs into components associated with emissions induced by consumption in China, South

Korea, Japan, and elsewhere, e.g., ∆CFS1
Dimming+Soiling = ∆CFS1−S5

Dimming+Soiling+∆CFS1−S6
Dimming+Soiling+

∆CFS1−S7
Dimming+Soiling + ∆CFRemaining

Dimming+Soiling. Further, scenarios 8–10 decompose ∆CFs and

SEYGs due to emissions produced in China into components associated with emissions in-

duced by consumption in China, South Korea, Japan, and elsewhere, e.g., ∆CFS1−S2
Dimming+Soiling =

∆CFS1−S8
Dimming+Soiling +∆CFS1−S9

Dimming+Soiling +∆CFS1−S10
Dimming+Soiling +∆CFRemaining

Dimming+Soiling. Like-

wise, scenarios 11–13 and 14–16 decompose ∆CFs and SEYGs due to emissions produced

in South Korea and Japan, respectively, into components associated with emissions induced

by consumption in China, South Korea, Japan, and elsewhere, e.g., ∆CFS1−S3
Dimming+Soiling =

∆CFS1−S11
Dimming+Soiling + ∆CFS1−S12

Dimming+Soiling + ∆CFS1−S13
Dimming+Soiling + ∆CFRemaining

Dimming+Soiling, and

∆CFS1−S4
Dimming+Soiling = ∆CFS1−S14

Dimming+Soiling+∆CFS1−S15
Dimming+Soiling+∆CFS1−S16

Dimming+Soiling+∆CFRemaining
Dimming+Soiling.

In short, scenarios 2–7 provide a comprehensive production– and consumption–based ac-

counting of SEYGs due to transboundary PM pollution associated with trade across NEA.

We also apply a two–tailed paired t–test to assess the statistical significance of the differences

between these two sets of results. Additionally, scenarios 8–16 offer a detailed breakdown

of the production–based SEYGs obtained in scenarios 2–4. By contrasting these with the

consumption-based SEYGs from scenarios 5–7, we gain insights into the SEYGs associated

with exports versus imports across NEA.
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Supplementary Methods

Multi–regional input–output model

Our definition of production– and consumption–based emission inventories are consistent

with the previous studies.1–5 Production–based emission inventories are compiled based on

the emissions produced within a region, regardless of where the goods and services are

consumed. In contrast, consumption–based emission inventories are compiled based on the

emissions produced to meet the consumption demands of a region, regardless of where the

emissions are produced.

For production–based emission inventories, we use the Emissions Database for Global At-

mospheric Research v5.0 (EDGARv5.0),6 of which the detailed disaggregation enables the

follow–on multi–regional input–output (MRIO) analysis that generates the consumption–

based emission inventories. We have also tried using EDGARv6.1,7 but it results in slightly

poorer model performance compared to EDGARv5.0 (Model evaluation), likely because

EDGARv5.0 has already taken into account the implementation of China’s clean air ac-

tions in the year 2015, while there are only minor improvements over Northeast Asia (NEA)

between these two versions. EDGARv8.18 is not available at the time of our model sim-

ulations. We apply region– and sector– specific non–methane volatile organic compound

(NMVOC) speciation profiles from the EDGARv4.3.2 database9 for the disaggregation of

NMVOC emissions in EDGARv5.0 into 25 species for better model simulations. In contrast

to previous studies,5 these NMVOC emissions can now be ascribed to particular sectors;

thus, they are involved in constructing the follow–on consumption–based emission invento-

ries and vary among different scenario runs. Ultimately, we obtain the production–based

emission inventories for each month of the year 2015 at a spatial resolution of 0.1◦ × 0.1◦,

covering six species of air pollutants: sulfur dioxide (SO2), nitrogen oxides (NOx), carbon

monoxide (CO), black carbon (BC), organic carbon (OC), and ammonia (NH3), plus 25

NMVOC species.
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For consumption–based emission inventories, we use the MRIO model to estimate the

emissions produced in one region to meet the consumption demands of another region. The

MRIO analysis is based on monetary flows between sectors across different regions:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

...

xm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,1 A1,2 A1,3 · · · A1,m

A2,1 A2,2 A2,3 · · · A2,m

A3,1 A3,2 A3,3 · · · A3,m

... ... ... . . . ...

Am,1 Am,2 Am,3 · · · Am,m

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

...

xm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
r y

1,r

∑
r y

2,r

∑
r y

3,r

...
∑

r y
m,r

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
r A

1,rxr

∑
r A

2,rxr

∑
r A

3,rxr

...
∑

r A
m,rxr

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
r y

1,r

∑
r y

2,r

∑
r y

3,r

...
∑

r y
m,r

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

In matrix form, x = Ax+ y, where xc is a vector representing the total production

(expressed as economic monetary output) of each sector in region c, which can be regarded

as the sum of the intermediate demand
∑

r A
c,rxr plus the final demand

∑
r y

c,r. For the

former, Ac,r is a normalized matrix of intermediate consumption coefficients, where columns

represent the input from sectors in region c required to produce one unit of output of each

sector in region r. More specifically, Ac,r
i,j represents the input from sector i in region c

required to produce one unit of output of sector j in region r. Therefore, Ac,rxr represents

the total inputs needed from sectors in region c to meet the production demands of each

sector in region r, and
∑

r A
c,rxr represents the total inputs needed from sectors in region c

to meet the production demands of each sector in all regions. For the latter, yc,r is a vector

of each sector’s output produced in region c and finally consumed in region r, and
∑

r y
c,r

is a vector of each sector’s output produced in region c and finally consumed in all regions.

Solving for the total output x, Equation 1 can be rewritten as:

x = (I−A)−1 y, (2)

where I is the identity matrix, and (I−A)−1 is the Leontief inverse matrix, which is useful
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for deriving the fraction of region– and sector– specific production related to consumption

in each and other regions by expanding Equation 2 to Equation 3:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

...

xm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (I−A)−1

⎡
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r y
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∑
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∑
r y
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...
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⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (I−A)−1
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y1,1 + y1,2 + y1,3 + · · ·+ y1,m

y2,1 + y2,2 + y2,3 + · · ·+ y2,m

y3,1 + y3,2 + y3,3 + · · ·+ y3,m

...

ym,1 + ym,2 + ym,3 + · · ·+ ym,m

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (I−A)−1

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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...

ym,1
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
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y1,2

y2,2

y3,2

...

ym,2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎡
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ · · ·+

⎡
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...
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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= (I−A)−1
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...
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1,3
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y3,3

...

ym,3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ · · ·+ (I−A)−1
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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y3,m

...

ym,m

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,1
cons

x2,1
cons

x3,1
cons

...

xm,1
cons

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
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x1,2
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x2,2
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...

xm,2
cons

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
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x1,3
cons

x2,3
cons

x3,3
cons

...

xm,3
cons

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ · · ·+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,m
cons

x2,m
cons

x3,m
cons

...

xm,m
cons

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

from which we denote x·r
cons =

[
x1,r
cons x2,r

cons x3,r
cons · · · xm,r

cons

]T
as the production of each

sector in each region related to the consumption in region r. x·r
cons is related to y·r =[

y1,r y2,r y3,r · · · ym,r

]T
, which is the final consumption in region r that includes both

the finished products in region r (yr,r) as well as those imported from other regions (yc,r, c ̸=

r), by the Leontief inverse matrix (I−A)−1, namely x·r
cons = (I−A)−1 y·r. Thus, the

fraction of region– and sector–specific production related to consumption in region r can be

readily obtained as:

f ·rcons =
x·r
cons

x
(4)

Taking Beijing, China as an illustration, Supplementary Figure 7 shows its fraction of

production in each sector linked to consumption within Beijing itself and in other regions. We

ultimately calculate the region– and sector–specific emissions associated with consumption

in region r (E·r
cons) as:

E·r
cons = f ·rcons ⊙ E, (5)

where E stands for the production–based emissions for each sector in each region, and ⊙

denotes the element–wise multiplication.

Our MRIO model has embedded the Chinese provincial MRIO table for 2015,10 which

is obtained from Carbon Emission Accounts and Datasets, into the Organisation for Eco-

nomic Co-operation and Development (OECD) Inter-Country Input-Output (ICIO) table
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for 2015.11 This results in a total of 31 Chinese provinces plus 64 other regions/countries,

including South Korea and Japan. The definition for sectors vary among different MRIO

tables as well as the EDGARv5.0 database, so we have harmonized them to the same 20

sectors through a mapping process (Supplementary Tables 3 – 4). In line with previous

studies,5 household direct emissions from the residential sector are regarded as driven by do-

mestic consumption. Therefore, we exclude them from this mapping process, keeping them

constant across all scenario runs. Ultimately, we obtain the consumption–based emission

inventories for 20 sectors in 95 regions for 2015. For the use in the integrated model, we

distribute them to the monthly gridmaps using the same spatial proxies, temporal profiles,

and NMVOC species segmentation as the production–based emissions, assuming that there

are no distinctions in these aspects between production– and consumption–based emissions.

Supplementary Figure 13 compares the grid–level production– and consumption–based emis-

sions for species NOx as an illustration. Compared to production–based emissions, which

are confined to the borders of specific countries, consumption–based emissions are lower in

magnitude but more widely distributed across the regions, reflecting the geographically more

dispersed nature of the supply chain.

GEOS–Chem chemical transport model with built–in radiative trans-

fer module

We use version 12.9.3 of the GEOS–Chem12 tropshperic chemistry (aka ’tropchem’) alongside

a built-in radiative transfer module13 to provide 3–hourly output of PM levels and PM—

attenuated versus PM–non–attenuated global horizontal irradiance (GHI) over NEA in 2015.

Following half a year of model spin–up, we run the global model at a horizontal resolution

of 2◦ × 2.5◦ for all of 2015, from which we extract boundary conditions that we use to run

the nested model over a regional domain of 5.5–55.0◦N and 60.0–146.25◦E (Supplementary

Figure 14) at a finer horizontal resolution of 0.5◦ × 0.625◦ also for all of 2015. All of our

model simulations extend vertically through 47 terrain–following hybrid–σ levels from the

8
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surface to 0.01 hPa, of which the first 30 layers lie below the dynamic tropause.

Model inputs used in this work are replicated from ref 14, except that we use EDGARv5.0

instead of EDGARv6.1 for our production–based emission inventories, as per the reasons

explained above, and that we have six more scenarios for our consumption–based emission

inventories. We turn off emissions that are shipped with the GEOS–Chem model but are

already accounted for in our production– or consumption–based emission inventories to avoid

double–counting. These include emissions from anthropogenic activities, agricultural soil

NOx, agricultural waste burning, aviation, and shipping. All of our model simulations are

driven by the Modern–Era Retrospective analysis for Research and Applications, version 2

(MERRA–2) meteorological fields.15

Model outputs are replicated from ref 16. Briefly, we output PM–attenuated and PM–

non–attenuated GHI, from which we estimate the direct normal irradiance (DNI) and the

diffuse horizontal irradiance (DHI) using the Erbs model.17 We also output dry deposition

velocities, dry mass concentrations, and thereby dry deposition fluxes of a total of 15 PM

species: sulfate (SO2−
4 ), nitrate (NO−

3 ), ammonium (NH+
4 ), hydrophilic (OCPI) and hy-

drophobic (OCPO) OC, secondary OC (SOC), hydrophilic and hydrophobic BC, and dust

distributed in seven size bins. Sea salt is excluded from the PM soiling process due to the

lack of measured optical properties when deposited on solar panels (Supplementary Table

5). Combining PM dry deposition fluxes with precipitation rates and elapsed time (relative

to 00:00:00 UTC January 1, 2015) helps to determine the net accumulation of PM dry mass

on solar panels, which ultimately determines the solar radiation received by solar cells, as

detailed below.

Linking GEOS–Chem to the PVLIB–Python model

Our linking of GEOS–Chem to the PVLIB–Python model is detailed in a recent study16 so

we briefly summarize it here. First, we derive from the aforementioned DNI, GHI, and DHI

the beam (Eb), ground–reflected (Eg), and sky–diffuse (Ed) components of the irradiance
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transposed to the solar panels, defined as "in" plane–of–array irradiance, POAIin = Eb +

Eg + Ed, by considering both solar positions and solar panel configurations.18 Second, we

determine the net accumulation of PM dry mass and the associated broadband optical depth

(τ) on solar panels, which will help derive the "out" plane–of–array irradiance (POAIout) from

POAIin in the third step.

In mathematical terms, POAIout = POAIin × e−τ , where τ =
∑15

i=1((Eabs,i + βiEscat,i) ×

(PMAccum
i − PMRemoval

i )). Here, Eabs,i and Escat,i are the absorption and scattering mass

extinction coefficients of PM species i, respectively, βi is the backscattering ratio of PM

species i. The values for these three parameters are taken from refs 19,20 and are reproduced

in Supplementary Table 5. The PM dry mass accumulation on solar panels, PMAccum
i , is

given by
∫
t(V

g
i cos(θT )+V t

i )Cidt, where V g
i and V t

i are the gravitational and turbulent settling

velocities of PM species i, respectively, Ci is the surface PM dry mass concentration of PM

species i, and θT is the tilt angle of the solar panels. The PM dry mass removal from solar

panels, PMRemoval
i , is a function of precipitation rates, p, and PM properties:16,20

PMRemoval
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PMAccum
i , if p > 5 mm h−1

⎧
⎪⎪⎨

⎪⎪⎩

PMAccum
i , if PMi ∈ [SO2−

4 ,NO−
3 ,NH

+
4 ]

0.5PMAccum
i , otherwise

, elif 3 < p ≤ 5 mm h−1

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

PMAccum
i , if PMi ∈ [SO2−

4 ,NO−
3 ,NH

+
4 ]

0.5PMAccum
i , elif PMi ∈ [OCPI,OCPO, SOC]

0, otherwise

, elif 1 < p ≤ 3 mm h−1

0, otherwise
(6)

We use version 0.8.0 of the PVLIB–Python model21 to take in the POAIout as well as

ambient temperature and wind speed from MERRA-2 to calculate the solar PV efficiency

10
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of three widely used solar panel configurations: horizontal fixed (Flat), fixed with optimal

tilt (Tilt), and one–axis tracking (OAT), though we primarily report results for OAT panels,

as per reasons explained in the main text. As shown in Supplementary Figure 12, through-

out this process, the cell temperature, effective radiance, direct current (DC) power, and

alternating current (AC) power are sequentially calculated with a temperature model, a PV

module 1, and an inverter 2. The capacity factors (CFs) are ultimately derived by divid-

ing the AC power by AC power rating of the inverter. We consider a PV cell efficiency of

12.94% from solar energy to DC power and an inverter efficiency of 96% from DC power to

AC power. Similar to refs 16,20,22, we have developed a wrapper for the PVLIB-Python

model to facilite its parallel computations for a large number of grids and time steps over

NEA.

Linking the PVLIB-Python model to satellite–derived solar PV

installations data

Our recent study16 combines the modelled ∆CFs with several bottom–up datasets of solar

PV installations to illustrate the considerable rewards for the solar energy industry in East

and South Asia from deep cuts in residential emissions. However, the bottom–up solar

PV installations used in the study were only available at the provincial level, which limits

the accuracy of our analysis. Leveraging a newly released global top–down inventory of

commercial–, industrial–, and utility–scale solar PV installations,23 we provide an improved

estimate of solar energy yield gaps (SEYGs) by combining this facility–level dataset with

our modelled ∆CFs within a geographic information system (GIS) program. We refer our

readers to ref 23 for more details on this facility–level dataset of solar PV installations

extracted from satellite imagery using machine learning. Briefly, for installations over 10,000

m2 (approximately 600 kW), the authors achieved a precision of 98.6% and a modest trade–
1Canadian_Solar_CS5P_220M___2009_
2ABB__MICRO_0_25_I_OUTD_US_208__208V_
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off in recall at 90% relative to their test set – sufficient for the application in our work. For

all detected and verified solar PV installations, the authors also provide estimates of their

nominal capacities (Pnom). Supplementary Figure 15 shows the distribution of these solar

PV installations over NEA.

∆CFs simply refers to those CFs that are reduced by atmospheric and/or deposited PM,

and they may be further decomposed into different components associated with production–

versus consumption–based emissions. We extract the facility–level area–weighted ∆CFs from

the grid–level ∆CFs within a GIS program. For each facility, we extract ∆CFs in grid cells

within that facility’s boundary. For grid cells overlapping with more than one facility, we

split them along the facility boundaries. With these complete (and split) grid cells and the

associated areas and ∆CFs, we derive the corresponding area–weighted ∆CFs for each facility.

We finally combine these facility–wise area–weighted ∆CFs with the nominal capacities of

the facilities to estimate their SEYGs due to transboundary PM pollution over a period of

time, say a year, as SEYGs =
∫
t ∆CF (t)× Pnom(t)dt, where t is the time within a year.

The total SEYGs in a region of interest is simply the sum of all its facilities’ SEYGs,
∑

facilities SEYGs. Note, however, that there is a time mismatch between our modelled ∆CFs

and the satellite–derived solar PV installations data, which are for the years 2015 and 2016–

2018, respectively. In a balanced manner, we use all the detected and verified facilities for

the calculation of SEYGs and
∑

facilitiesSEYGs, emphasizing that this is intended as an

illustrative yet meaningful demonstration for possible cases in the year 2019. This approach

is also justified by the difficulty of precisely knowing how each solar panel is managed in

practice, such as cleaning practices that may affect ∆CFs and consequently SEYGs. Since

the satellite–derived solar PV installations are for commercial–, industrial–, and utility–

scale facilities, we follow previous studies16,24 to combine them with our modelled ∆CFs

of OAT panels for the calculation of SEYGs. We acknowledge that this approach likely

underestimates the actual SEYGs due to the lack of consideration of distributed solar PV

installations. However, this issue cannot be easily addressed until a census of distributed
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solar PV installations becomes available for NEA.

Model evaluation

We present an extended model evaluation against measured ground–level concentrations of

the lumped PM2.5 and its major chemical components, including sulfate (SO2−
4 ), nitrate

(NO−
3 ), ammonium (NH+

4 ), organic carbon (OC), and black carbon (BC) across NEA. We

refer our readers to section 2.2 of ref 14 for details on the collection and quality control

of these measurements from multiple sources. After performing data quality checks, the

measurements for the lumped PM2.5 are averaged into monthly means and aggregated to the

GEOS-Chem nested model grids. This facilites an effective match and fair comparison with

the simulated data, where modelled PM2.5 and its major chemical components are calculated

in a way consistent with measurements: a relative humidity of 50%, temperature of 298 K,

and a pressure of 1013.25 hPa.25 For the measurements of the major chemical components

of PM2.5, the representative periods can vary from several days to months. Therefore, we

sample our model values according to the locations and periods of these measurements to

ensure a fair comparison.

As in ref 16, we describe the comparisons between model simulations and in situ mea-

surements using the Pearson correlation coefficients (R), normalised mean bias (NMB), and

normalised root mean squared error (NRMSE). The formulas are as follows:

R =

∑N
i=1(Mi −M)(Oi −O)√∑N

i=1(Mi −M)2
√∑N

i=1(Oi −O)2
(7)

NMB =

∑N
i=1(Mi −Oi)∑N

i=1 Oi

× 100% (8)

NRMSE =

√
1
N

∑N
i=1(Mi −Oi)2

Omax −Omin
, (9)

where M and O denote the model and measured values, respectively, with their mean values
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denoted by M and O. Omax and Omin represent the maximum and minimum measured

values, respectively, and N is the number of comparison data points.

Supplementary Figure 16 presents the overall model evaluation results, showing that the

R, NMB, and NRMSE between model and measured values range from 0.48 to 0.69, from

13.9% to 28.2%, and from 16.9% to 23.7% for different species, respectively. Notably, we

initially observed poor model performance for black carbon (Supplementary Figure 17). We

address this issue by re–distributing its emissions in EDGARv5.0 according to the spatial

profile of the equivalent in the MIX Asian emission inventory,26 which better represents

regional characteristics. For the lumped PM2.5, these values are 0.63, 41.3%, and 17%,

respectively. Notably, all R values are statistically significant (p < 0.001), suggesting that

the model effectively captures the variations of PM2.5 and its major chemical compoments

in Asia for the year 2015. Admittedly, the NMB is slightly high for the lumped PM2.5.

Nonetheless, this is a widespread occurrence across the majority of China, which overlapps

with the majority of solar PV installations, as well as throughout South Korea and Japan

(Supplementary Figure 18). This suggests a robust source–receptor relationship regarding

SEYGs due to PM pollution associated with trade across NEA in terms of self and mutual

percentage contributions, as revealed in our work. Even though the absolute values might be

consistently high, this issue is partly counterbalanced by our exclusion of distributed solar

panels in the calculation of SEYGs. As mentioned in the main text, we have also attempted

to use EDGARv6.1. However, this resulted in slightly poorer model performance compared

to EDGARv5.0 (Supplementary Figure 16 versus Supplementary Figure 19).

Overall, the above statistics indicate that the model performs reasonably well in simu-

lating both the lumped and speciated PM2.5, although there remains room for improvement,

particularly regarding the R values of sulfate and black carbon, as well as the NMB values

of the lumped PM2.5. Despite these areas of improvement, the model’s performance vali-

dates its use in quantifying the source–receptor relationship of SEYGs due to PM pollution

associated with trade among China, South Korea, and Japan.
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Supplementary Tables

Supplementary Table 1: Design of experiments: Major scenarios.

Scenarios Descriptions

S1 Baseline scenario with EDGARv5.0 emissions
S2 Exclude emissions produced in China in response to consumer demand worldwide
S3 Exclude emissions produced in South Korea in response to consumer demand worldwide
S4 Exclude emissions produced in Japan in response to consumer demand worldwide
S5 Exclude emissions induced by consumption in China, regardless of where they occur worldwide
S6 Exclude emissions induced by consumption in South Korea, regardless of where they occur worldwide
S7 Exclude emissions induced by consumption in Japan, regardless of where they occur worldwide
S8 Exclude emissions produced in China and induced by its own consumption
S9 Exclude emissions produced in China but induced by consumption in South Korea
S10 Exclude emissions produced in China but induced by consumption in Japan
S11 Exclude emissions produced in South Korea but induced by consumption in China
S12 Exclude emissions produced in South Korea and induced by its own consumption
S13 Exclude emissions produced in South Korea but induced by consumption in Japan
S14 Exclude emissions produced in Japan but induced by consumption in China
S15 Exclude emissions produced in Japan but induced by consumption in South Korea
S16 Exclude emissions produced in Japan and induced by its own consumption

Supplementary Table 2: Design of experiments: Subscenarios.

CF Include PM dimming? Include PM soiling?

CFSoiling
Dimming Yes Yes

CFNOSoiling
Dimming Yes No

CFNOSoiling
NODimming No No

Supplementary Table 3: Harmonising the sectors of goods and services in the Chinese provincial
MRIO table and the OECD ICIO table.

The embedded MRIO table Chinese provincial MRIO table OECD ICIO table

Agriculture Agriculture, forestry and fishery prod-
ucts

Agriculture, forestry and fishing

Mining Coal mining and processing products Mining and extraction of energy pro-
ducing products

Oil and gas mining products Mining and quarrying of non-energy
producing products

Metal mining and processing products Mining support service activities
Non-metallic minerals

Food and tobacco Food and tobacco Food products, beverages and tobacco
Textiles and Clothes Textile Textiles, wearing apparel, leather and

related products
Textile clothing, shoes, hats, leather

Wood and furniture Wood products and furniture Wood and products of wood and cork
Paper printing Paper making, printing, cultural, edu-

cational and sports goods
Paper products and printing

Coke and petroleum Petroleum, coking products and nu-
clear fuel processing products

Coke and refined petroleum products

Chemicals Chemical products Chemicals and pharmaceutical prod-
ucts
Rubber and plastic products

Continued on next page
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The embedded MRIO table Chinese provincial MRIO table OECD ICIO table
Non-metallic mineral Non-metallic mineral products Other non-metallic mineral products
Metals Metal smelting products Basic metals

Metal products Fabricated metal products
General equipment General equipment, special equipment Machinery and equipment, n.e.c.
Electrical and optical equipment Electrical machinery and equipment Computer, electronic and optical

products
Communication equipment, comput-
ers and other electronic equipment

Electrical equipment

Instruments and meters
Transport equipment Transportation equipment Motor vehicles, trailers and semi-

trailers
Other transport equipment

Other manufacturing Other manufacturing products Other manufacturing; repair and in-
stallation of machinery and equipment

Scrap
Metal products, equipment repair ser-
vices

Electricity Production and supply of electricity Electricity, gas, water supply, sewer-
age, waste and remediation services

Production and supply of heat and gas
Production and supply of water

Construction Construction Construction
Wholesale and retail trade Wholesale and retail Wholesale and retail trade; repair of

motor vehicles
Hotels and restaurants Accommodation and catering Accommodation and food services
Transport, postage, and warehousing Transportation, warehousing and post Transportation and storage

Telecommunications
Other services Others Publishing, audiovisual and broad-

casting activities
IT and other information services
Financial and insurance activities
Real estate activities
Other business sector services
Public administration and defence;
compulsory social security
Education
Human health and social work
Arts, entertainment, recreation and
other service activities
Private households with employed per-
sons

Supplementary Table 4: Harmonising the sectors of the embedded MRIO table and the EDGARv5.0
database.

The embedded MRIO table EDGARv5.0

Agriculture Manure management
Rice cultivation
Direct soil emissions
Manure in pasture/range/paddock
Other direct soil emissions
Agricultural waste burning

Mining Fugitive emissions from solid fuels
Fugitive emissions from oil and gas
Fossil fuel fires
Fugitive emissions from gaseous fuels
Fugitive emissions from liquid fuels

Food and tobacco Production of pulp/paper/food/drink
Textiles and Clothes Manufacturing Industries and Construction
Wood and furniture Manufacturing Industries and Construction
Paper printing Production of pulp/paper/food/drink

Continued on next page
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The embedded MRIO table EDGARv5.0
Coke and petroleum Other Energy Industries
Chemicals Soda ash production and use

Production of chemicals
Solvent and other product use: degrease
Solvent and other product use: other
Solvent and other product use: paint
Solvent and other product use: chemicals

Non-metallic mineral Cement production
Lime production
Production of other minerals

Metals Production of metals
General equipment Manufacturing Industries and Construction
Electrical and optical equipment Semiconductor/electronics manufacture

Electrical equipment
Transport equipment Manufacturing Industries and Construction
Other manufacturing Solid waste disposal on land

Waste incineration
Wastewater handling
Other waste handling

Electricity Public electricity and heat production
Construction Manufacturing Industries and Construction
Transport, postage, and warehousing Domestic aviation

Road transportation no resuspension
Road transportation resuspension
Rail transportation
Inland navigation
Other transportation

Wholesale and retail trade Residential (excluding household direct emissions) and other sectors
Hotels and restaurants
Other services

Supplementary Table 5: The measured optical properties of deposited PM taken from refs 19,20
used in this study.

Species Eabs (m2g−1) β Escat (m2g−1)

Dust 0.02 0.02 1.00
Organic carbon 0.00 0.30 4.00
Black carbon 8.00 0.30 0.00

Sulfate-nitrate-ammonium 0.00 0.30 4.00
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Supplementary Figures

Supplementary Figure 1: The differences in annual mean losses of PV efficiency (∆CFs) due to PM
pollution (a-d), including PM dimming (e-h) and soiling (i-l), associated with emissions induced
by consumption in versus those produced in China (a,e,i), South Korea (b,f,j), Japan (c,g,k), and
Others (d,h,l). Scales are different for each column.

Supplementary Figure 2: The differences in annual mean PV efficiency losses due to deposited
versus atmospheric PM associated with emissions produced in (a-d) and induced by consumption
(e-h) in China (a,e), South Korea (b,f), Japan (c,g), and Others (d,h). Scales are different for
each column.
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DRAFTSupplementary Figure 3: The paired t–tests for the differences between consumption–based and
production–based results of the source-receptor relationship of SEYGs due to PM pollution (a),
including PM dimming (b) and soiling (c), among China, South Korea, and Japan. These statistical
significance tests are conducted using the facility–level SEYGs data collected from each of the
countries in each of the scenarios. T–statistics with associated p–values less than the significance
level α = 0.01 are marked with two asterisks (**), and it is observed that the differences between
consumption-based and production-based results are all statistically significant.
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Supplementary Figure 4: Geographical distribution of annual mean losses of PV efficiency (∆CFs)
of OAT panels due to PM pollution (a,d,g,j), including PM dimming (b,e,h,k) and soiling (c,f,i,l),
associated with emissions produced in China linked to consumption in China (a-c), South Korea
(d-f), Japan (g-i), and elsewhere globally (j-l).
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Supplementary Figure 5: Geographical distribution of annual mean losses of PV efficiency (∆CFs)
of OAT panels due to PM pollution (a,d,g,j), including PM dimming (b,e,h,k) and soiling (c,f,i,l),
associated with emissions produced in South Korea linked to consumption in China (a-c), South
Korea (d-f), Japan (g-i), and elsewhere globally (j-l).
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Supplementary Figure 6: Geographical distribution of annual mean losses of PV efficiency (∆CFs)
of OAT panels due to PM pollution (a,d,g,j), including PM dimming (b,e,h,k) and soiling (c,f,i,l),
associated with emissions produced in Japan linked to consumption in China (a-c), South Korea
(d-f), Japan (g-i), and elsewhere globally (j-l).
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DRAFTSupplementary Figure 7: Fraction of production of Beijing, China in each MRIO sector (from top
to bottom) linked to consumption within Beijing itself and in other regions (from left to right).
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Supplementary Figure 8: Contributions from source countrys’ production– (a1-f1,a2-f2) and
consumption–related (g1-l1,g2-l2) emissions to receptor countrys’ SEYGs due to PM pollu-
tion (a1-l1) and its soiling (a2-l2) when excluding precipitation (a1,g1,a2,g2) and including
panel cleaning on a yearly (b1,h1,b2,h2), quarterly (c1,i1,c2,i2), monthly (d1,j1,d2,j2), weekly
(e1,k1,e2,j2), and daily (f1,l1,f2,l2) basis.
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Supplementary Figure 9: The differences between the contributions from source countrys’
production– (a1-f1,a2-f2) and consumption–related (g1-l1,g2-l2) emissions to receptor coun-
trys’ SEYGs due to PM pollution (a1-l1) and its soiling (a2-l2) when excluding precipitation
(a1,g1,a2,g2) and including panel cleaning on a yearly (b1,h1,b2,h2), quarterly (c1,i1,c2,i2),
monthly (d1,j1,d2,j2), weekly (e1,k1,e2,j2), and daily (f1,l1,f2,l2) basis, as compared to those
contributions in the baseline scenario.
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Supplementary Figure 10: Attribution of contributions of production–related emissions from China
(a1-f1,a2-f2), South Korea (g1-l1,g2-l2), and Japan (m1-r1,m2-r2) to SEYGs in Northeast Asia
due to PM pollution (a1-r1) and its soiling (a2-r2) to consumption in these countries and elsewhere
globally when excluding precipitation (a1,g1,m1,a2,g2,m2) and including panel cleaning on a
yearly (b1,h1,n1,b2,h2,n2), quarterly (c1,i1,o1,c2,i2,o2), monthly (d1,j1,p1,d2,j2,p2), weekly
(e1,k1,q1,e2,k2,q2), and daily (f1,l1,r1,f2,l2,r2) basis.

26



DRAFT
Supplementary Figure 11: The differences between the attribution of contributions of production–
related emissions from China (a1-f1,a2-f2), South Korea (g1-l1,g2-l2), and Japan (m1-r1,m2-r2)
to SEYGs in Northeast Asia due to PM pollution (a1-r1) and its soiling (a2-r2) to consumption in
these countries and elsewhere globally when excluding precipitation (a1,g1,m1,a2,g2,m2) and in-
cluding panel cleaning on a yearly (b1,h1,n1,b2,h2,n2), quarterly (c1,i1,o1,c2,i2,o2), monthly
(d1,j1,p1,d2,j2,p2), weekly (e1,k1,q1,e2,k2,q2), and daily (f1,l1,r1,f2,l2,r2) basis, as com-
pared to those attribution in the baseline scenario.
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Supplementary Figure 12: Workflow to estimate and attribute SEYGs due to transboundary partic-
ulate matter pollution associated with trade across Northeast Asia. Full definitions of the acronyms
include: 1) global horizontal irradiance (GHI) simulated from GEOS-Chem coupled with rapid ra-
diative transfer model for GCMs (RRTMG), and it is subsequently decomposed to direct normal
irradiance (DNI) and diffuse horizontal irradiance (DHI); 2) beam (Eb), ground-reflected (Eg), and
sky-diffuse (Ed) components of transposed irradiance; and 3) direct (DC) and alternating (AC)
current powers.
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Supplementary Figure 13: Geographical distribution of annual mean production– (a-c) versus
consumption–based (d-f) emission estimates in 2015, using NOx as an illustration. The emissions
produced in China, South Korea, and Japan are confined to the borders of these countries, as
detailed in the insets. The emissions induced by consumption in these countries are lower in
magnitude but more widely distributed across Northeast Asia, as highlighted in the insets. Scales
are different for different columns.
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Supplementary Figure 14: The GEOS-Chem model domain used in this study overlaps with ground
monitoring sites, indicated by orange dots (for lumped PM2.5) and red triangles (for speciated
PM2.5). The ‘WINDOW REGION’ refers to the parent domain described with a 2◦ × 5◦ resolution.
The ‘TPCORE REGION’ refers to the nested domain described with a 0.5◦ × 0.625◦ resolution.
The region between them is where boundary conditions are applied.
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Supplementary Figure 15: Geographical distribution of solar PV installations across Northeast
Asia, extracted and reproduced from ref 23. The colour of each polygon represents the estimated
installed capacity of the detected and verified solar PV installations.
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Supplementary Figure 16: Model evaluation results for the lumped PM2.5 and its major chemical
components, including sulfate (SO2−

4 ), nitrate (NO−
3 ), ammonium (NH+

4 ), organic carbon (OC),
and black carbon (BC) across Northeast Asia. The Pearson correlation coefficients (R), normalised
mean bias (NMB), and normalised root mean squared error (NRMSE) are calculated for each
species.
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Supplementary Figure 17: Same as Figure 16 but without re–distributing black carbon emissions in
EDGARv5.0 according to the spatial profile of the equivalent in the MIX Asian emission inventory.
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Supplementary Figure 18: Site–scale model evaluation results for the lumped PM2.5. The nor-
malised mean bias (NMB) is calculated for each monitoring site.
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Supplementary Figure 19: Same as Figure 16 but using EDGARv6.1 instead of EDGARv5.0.
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