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A B S T R A C T

While the aerosol optical depth (AOD) product from the Visible Infrared Imaging Suite (VIIRS) instrument has
proven effective for estimating regional ground-level particle concentrations with aerodynamic diameters less
than 2.5 μm (PM2.5), its performance at larger spatial scales remains unclear. Despite the wide application of
statistical models in building ground-level PM2.5 satellite remote sensing retrieval models, a limited number of
studies have considered the spatiotemporal heterogeneities for model structures. Taking China as the study area,
we used the VIIRS AOD, together with multi-source auxiliary variables, to develop a spatially structured adaptive
two-stage model to estimate ground-level PM2.5 concentrations at a 6-km spatial resolution. To this end, we first
defined and calculated a dual distance from the ground-level PM2.5 monitoring data. We then applied the un-
weighted pair-group method with arithmetic means on dual distances and obtained 13 spatial clusters.
Subsequently, we combined the time fixed effects regression (TEFR) model and geographically weighted re-
gression (GWR) model to develop the spatially structured adaptive two-stage model. For each spatial cluster, we
examined all possible combinations of auxiliary variables and determined the best model structure according to
multiple statistical test results. Finally, we obtained the PM2.5 estimates through regression mapping. At least
seven model-fitting data records per day made a good threshold that could best overcome the model overfitting
induced by the second-stage GWR model at the minimum price of losing samples. The overall model fitting and
ten-fold cross validation (CV) R2 were 0.82 and 0.60, respectively, under that threshold. Model performances
among different spatial clusters differed to a certain extent. High-CV R2 values always exceeded 0.6 while low-
CV R2 values less than 0.5 also existed. Both the size of the model-fitting data records and the extent of urban-
industrial characteristics of spatial clusters accounted for these differences. The PM2.5 estimates agreed well with
the PM2.5 observations with correlation coefficients all exceeding 0.5 at the monthly, seasonal, and annual
scales. East of Hu’s line and north of the Yangtze River were characterized by high PM2.5 concentrations. This
study contributes to the understanding of how well VIIRS AOD can retrieve ground-level PM2.5 concentrations at
the national scale and strategies for building ground-level PM2.5 satellite remote sensing retrieval models.

1. Introduction

Epidemiological studies have disclosed various adverse health out-
comes (e.g. increasing cardiovascular- and respiratory-related mortality
and morbidity) caused by exposure to particles with an aerodynamic
diameter of less than 2.5 μm (PM2.5) (Burnett et al., 2018; Dominici
et al., 2006; Pope et al., 2002). China has become one of the regions
facing the most severe PM2.5 pollution worldwide due to rapid urba-
nization and industrialization (van Donkelaar et al., 2015; van

Donkelaar et al., 2016). Developing a PM2.5 dataset with high accuracy,
resolution, and coverage can benefit both epidemiological studies and
environmental policy making. Using satellite-retrieved aerosol optical
depth (AOD) data to estimate ground-level PM2.5 concentrations is a
new technical method that has experienced rapid development in re-
cent years (Hoff and Christopher, 2009). It can effectively extend
ground-based air quality monitoring networks due to the broad spatial
coverage and relatively high spatial resolution of satellite-retrieved
AOD (Della Ceca et al., 2018), thereby allowing for the acquisition of
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the aforementioned PM2.5 dataset.
Previous studies have employed a series of AOD products to esti-

mate ground-level PM2.5 concentrations. These mainly include AOD
products from geostationary satellite sensors, such as the Geostationary
Ocean Color Imager (Xu et al., 2015) and the Advanced Himawari
Imager (Wang et al., 2017), and polar-orbiting satellite sensors, such as
the Moderate Resolution Imaging Spectroradiometer (MODIS) (Ma
et al., 2016a) and the Visible Infrared Imaging Radiometer Suite
(VIIRS) (Wu et al., 2016). The MODIS instrument provides a long time-
series of archived AOD products with reliable quality and direct
availability that have been most widely used (Chu et al., 2016); how-
ever, it is already working beyond its design life. Consequently, the
quality of its AOD products is inevitably declining (Lyapustin et al.,
2014; Xiao et al., 2016). VIIRS is a follow-on instrument to MODIS with
very similar capabilities (Jackson et al., 2013). While the VIIRS AOD
data can estimate accurate ground-level PM2.5 concentrations at re-
gional scales (Wu et al., 2016; Yao et al., 2018), its performance at
larger spatial scales (e.g. national scale) remains unclear.

Previous studies have adopted a variety of statistical models to es-
tablish quantitative PM2.5-AOD relationships. These primarily include
the generalized linear regression model (Liu et al., 2007; 2005), gen-
eralized additive model (Liu et al., 2009; Zou et al., 2016), geo-
graphically weighted regression (GWR) model (Hu et al., 2013; Ma
et al., 2014; Song et al., 2014), geographically and temporally weighted
regression model (Guo et al., 2017; He and Huang, 2018a,b, linear or
nested linear mixed effects model (Lee et al., 2011; Ma et al., 2016b),
two-stage model (Hu et al., 2014; Ma et al., 2016a; Wu et al., 2016),
and timely structure adaptive model (Fang et al., 2016). The models are
relatively easy to calibrate and validate. Additionally, most of them can
reach a high level of prediction accuracy due to the contributing
strength of model predictors that are capable of changing in time,
space, or both. Nevertheless, few of them have considered the spatio-
temporal heterogeneities in the model structure. In future studies, both
model predictors and their contributing strength should be varied with
time and space to produce PM2.5 estimates with higher accuracy and
lower bias (Fang et al., 2016).

The objective of this study was to evaluate the performance of VIIRS
AOD in estimating ground-level PM2.5 concentrations on the national
scale and to test a newly developed spatially structured adaptive two-
stage model. The model, as a preliminary attempt, captured the spatial
heterogeneity of model predictors and the spatiotemporal hetero-
geneities of their contributing strength. We first divided the geo-
graphical area of China into spatial clusters based on the inherent
characteristics of ground-level PM2.5 concentrations. Subsequently, we
employed a time fixed effects regression (TFER) model and a GWR
model to establish a two-stage model with the most suitable model
structure for each spatial cluster. Next, we used a ten-fold cross vali-
dation (CV) and residual autocorrelation test to evaluate the model
performance. Finally, we estimated the daily PM2.5 concentrations, and
thus the monthly, seasonal, and annual PM2.5 concentrations.

2. Data and methods

Fig. 1 shows the workflow for estimating the ground-level PM2.5

concentrations in this study. Details of each procedure are described in
the following sections.

2.1. Ground-level PM2.5 monitoring data

The Ministry of Ecology and Environment of China has been using
the tapered element oscillating microbalance or beta-attenuation
method to measure ground-level PM2.5 concentrations and distributing
them on the official website of the China National Environmental
Monitoring Center (CNEMC) (http://www.cnemc.cn/). Some cities
(e.g., Beijing, Tianjin, and Guangzhou) also established additional
monitoring sites to measure ground-level PM2.5 concentrations using

the same method, distributing them online. In this study, we acquired
hourly ground-level PM2.5 concentrations from the official website of
CNEMC and the Beijing Municipal Environmental Monitoring Center
(http://zx.bjmemc.com.cn/) (see Fig. 2). We further calculated the
daily averages of PM2.5 concentrations from the hourly data since the
former are more meaningful for epidemiological studies and environ-
mental management.

2.2. VIIRS EDR AOD and AERONET AOD data

VIIRS is a key scanning radiometer on board the Suomi-National
Polar-orbiting Partnership satellite. It extends and improves upon the
Advanced Very High Resolution Radiometer and MODIS (Bian et al.,
2018), leading to improved radiometric measurement quality, broad
spectral range, and fine spatial resolution (Schueler et al., 2002). The
VIIRS aerosol algorithm, which is similar but not identical to the MODIS
algorithm, retrieves AOD from reflected solar radiation observed in
multiple moderate-resolution (750m at nadir) VIIRS bands. This gen-
erates the VIIRS aerosol Intermediate Product (IP), which is a full set of
aerosol parameters, including the AOD at 550 nm. The VIIRS aerosol
team further aggregates 8×8 750m IP AOD filtered using quality
flags, leading to 6-km AOD, which is included in the VIIRS Environ-
mental Data Record (EDR). In this study, we collected all the VIIRS EDR
AOD images covering China from the Comprehensive Large Array-data
Stewardship System (www.class.noaa.gov). The VIIRS aerosol team also
provides corresponding pixel-level quality assurance (QA) flags for the
VIIRS EDR AOD data. These flags are four distinct numbers with zero
representing “not produced”, one representing “low-quality”, two re-
presenting “medium-quality”, and three representing “high-quality”.
Although obtaining the highest spatiotemporal coverage of the VIIRS
EDR AOD data by keeping all data regardless of the QA flag would be
ideal, the potential negative effects of AOD deviations on PM2.5 esti-
mates should be prevented. We employed ground monitored AOD from
the Aerosol Robotic Network to validate VIIRS EDR AOD with different
QA flags. We then decided to use VIIRS EDR AOD with QA flags
equaling three or two in this study based on their validation results and
spatiotemporal coverage; more details are presented in Supporting
Material: Text S1, Figs. S1–S4.

2.3. Auxiliary data

Both PM2.5 emission-related factors and meteorological conditions
influence, and thus can adjust, PM2.5-AOD relationships. For PM2.5

emission-related factors, we mainly used the NO2 and vegetation index
data. NO2 data based on ozone monitoring instrument measurements
(Boersma et al., 2011) were from the Tropospheric Emission Monitoring
Internet Service (http://www.temis.nl/airpollution/no2col/
no2regioomi_v2.php). The temporal and spatial resolution of the NO2

data were 1-d and 0.25°×0.25°, respectively. We used the NO2 data of
the previous day to adjust the PM2.5-AOD relationship of the current
day, an effective practice adopted in previous studies (Wu et al., 2016;
Yao et al., 2018). The vegetation index data were from the Level-1 and
Atmospheric Archive and Distribution System (LAADS) (https://
ladsweb.modaps.eosdis.nasa.gov/search/). A series of vegetation
index products with different temporal and spatial resolutions are
available on the LAADS website. We downloaded the Terra and Aqua
MODIS vegetation index products with temporal and spatial resolutions
of 16-d and 1-km, respectively (code: MOD13A2, MYD13A2). Both in-
cluded the normalized difference vegetation index (NDVI) and en-
hanced vegetation index (EVI). The combination of data from the two
satellites improved the temporal resolution from 16-d to 8-d. Similar to
VIIRS EDR AOD data, pixel reliability data also existed in these pro-
ducts (−1: no data, 0: good data, 1: marginal data, 2: snow or ice, and
3: cloudy). We omitted those data whose pixel reliability was not 0 or 1
to minimize the negative effects of vegetation index deviations on PM2.5

estimates and simultaneously keep as much data as possible.
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For meteorological conditions, we used both the aerological and
surface meteorological data. The former mainly contained the planetary
boundary layer height (PBLH) and average relative humidity in the nine
bottom tropospheric layers (1000 hPa to 800 hPa with a step length of
25-hPa increments) (RH_PBL). The PBLH and RH_PBL data, based on
the Modern-Era Retrospective Analysis for Research and Application
(Rienecker et al., 2011), were from the Goddard Earth Sciences Data
and Information Services Center (code: tavg1_2d_flx_Nx, in-
st3_3d_asm_Cp) (https://disc.gsfc.nasa.gov/daac-bin/FTPSubset.pl),
and their temporal and spatial resolutions were 1-h, 0.5°× 0.67° and 3-
h, 1.25°× 1.25°, respectively. We averaged the PBLH and RH_PBL data
from 12:30 to 14:30 and 11:00 to 14:00 local time, respectively, to
correspond to the VIIRS overpass time. The surface meteorological data,
including the daily averaged temperature (TEMP), daily averaged sur-
face relative humidity (SRH), daily precipitation (PRCP), daily aver-
aged wind speed (WS), and daily maximum wind speed with the cor-
responding wind direction, came from the China Meteorological Data
Sharing System (http://data.cma.cn/). We derived four wind vectors

(EWS, SWS, WWS, and NWS) from the daily maximum wind speed and
its wind direction (Wu et al., 2016; Yao et al., 2018). Except for TEMP
and SRH, we used the remaining variables of both the previous day and
the current day to adjust the PM2.5-AOD relationship of the current day.

2.4. Data integration

We collected the ground-level PM2.5 monitoring, VIIRS EDR AOD,
and auxiliary data covering China in 2014 for our modeling demon-
stration. We created a 6 km×6 km grid over China to integrate the
multi-source data. We averaged those daily averaged PM2.5 con-
centrations whose monitoring sites fell within a common grid and as-
signed the average value to that grid. We resampled the VIIRS EDR
AOD, NO2, NDVI, EVI, PBLH, and RH_PBL data to the 6 km×6 km grid
and interpolated the surface meteorological data to the 6 km×6 km
grid using the nearest-neighbor method. Both the model-fitting and
regression mapping datasets were obtained after data integration.

Fig. 1. Workflow for estimating the ground-level PM2.5 concentrations in this study.
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2.5. Spatial division

Prior to developing the model, we assumed that those spatially
proximate areas with similar PM2.5 concentrations and PM2.5 variations
should have similar influencing factors on PM2.5-AOD relationships and
thus could share identical model structures. In addition, we used the
Moran’s I (a statistic for testing the spatial autocorrelation and its de-
gree (Moran, 1950)) to test the spatial autocorrelation of the PM2.5

concentrations, and found that significant positive spatial autocorrela-
tions existed in all days and that more than 95% of the days reported a
Moran’s I of greater than 0.4. This means that spatially proximate areas
can always have similar PM2.5 concentrations. Therefore, we only need
to define a dual distance that can reflect the geographical distance and
the attribute distance of the PM2.5 variations. We can then apply a
clustering algorithm to that dual distance to divide the whole geo-
graphical area of China into multiple spatial clusters, each of which
shared an identical model structure when building quantitative PM2.5-
AOD relationships. The calculation of the geographical distance and the
attribute distance of the PM2.5 variations were among those grids that
had daily averaged PM2.5 concentrations (hereafter referred to as PM2.5

grids).

= +DG X X Y Y( ) ( )ij i j i j
2 2 (1)

where DGij is the geographical distance between grid i and j, and (Xi,Yi)
and (Xj, Yj) are the coordinates of grid i and j under a projected co-
ordinate system.

=DA R1ij ij (2)

where DAij is the attribute distance of PM2.5 variations between grid i
and j, and Rij is the correlation coefficient between the time series of
PM2.5 concentrations of grid i and j.

= × + ×DD w DA w DGij ij ij1 2 (3)

where DDij is the dual distance between grid i and j, DAij and DGij are
the geographical distance and the attribute distance of the PM2.5 var-
iations normalized by their ranges, respectively, and w1 and w2 are the
weightings, and their sum equals one. Their relationship will influence
the spatial division result. More specifically, if w1 > w2, the final
spatial clusters would likely be more spatially adjacent but share fewer
common characteristics from the PM2.5 variations; the situation would
be opposite if w1 < w2. In this study, we assigned 0.5 to both, meaning
that the geographical distance and the attribute distance of the PM2.5

variations were equally important, in order to obtain an intermediate
reasonable spatial division result.

While a series of cluster algorithms are adoptable, we employed the
unweighted pair-group method with arithmetic means (UPGMA),
taking advantage of its simplicity and reliability (Liu et al., 2018). The
clustering process of the UPGMA algorithm was as follows. We first
combined those two PM2.5 grids that had the minimal dual distance. We
then updated the dual distances between the combined PM2.5 grid and
the remaining PM2.5 grids. The new dual distance was the unweighted,
averaged dual distance of the original two PM2.5 grids and the re-
maining PM2.5 grids. Next, we repeated the combining and updating
process until all of the PM2.5 grids were combined. Subsequently, we
selected a threshold and stipulated that only those PM2.5 grids whose
dual distances or updated dual distances were less than that threshold
could be combined. Finally, we assigned the spatial clustering results of
the PM2.5 grids to their corresponding Thiessen polygons (THIESSEN,
1911), which were further merged to generate the final spatial clusters.
Ideally, all Thiessen polygons falling within the same spatial cluster
should be spatially adjacent. Thus, we merged those polygons that were
not spatially adjacent to other polygons in the same spatial cluster, or if
they were standing alone, as a singleton spatial cluster, to which

Fig. 2. Spatial distribution of ground PM2.5 monitoring sites and weather stations. Note that most of the ground PM2.5 monitoring sites are located in the central and
eastern parts of China and many of them in this map are overlaid because of their proximity to each other.
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adjacent Thiessen polygons had the minimum averaged original dual
distance with them. The value of the threshold was pivotal. The number
of spatial clusters would be very small if the threshold was set too high.
Consequently, their areas would be very large, hiding the spatial het-
erogeneity of the model structure. The number of spatial clusters would
be very large if the threshold was set too low. As a result, their areas
and the size of the model-fitting dataset would be very small, de-
creasing the reliability of the regression analysis.

2.6. Model fitting

After the spatial division was completed, we determined the best
model structure and conducted the first-stage TFER modeling for each
spatial cluster. The TFER model stems from panel data regression
models. By incorporating a series of temporal dummy variables, which
were set as daily intercepts in this study, into the traditional multiple
linear regression model, we simultaneously established the space-in-
variant temporal impact and the net impact of the predictors on PM2.5

concentrations, and thus, captured the temporal heterogeneity of the
relationship between PM2.5 and AOD for each spatial cluster. We first
constructed all possible TFER models using the ground-level PM2.5

concentrations as the dependent variable, VIIRS EDR AOD as the main
predictor, and different combinations of auxiliary data as the assistant
predictors. We then sorted those models that had simultaneously passed
the F-test of the regression equation and the t-test of the predictors
according to the number of significant daily intercepts in descending
order. Because multiple models with an identical number of significant
daily intercepts existed, we further selected a threshold for the number
of significant daily intercepts, above which≥10 models emerged, and
they were regarded as candidate models. We finally determined the best
model that had the highest adjusted coefficient of determination (R2)
from the candidate models. As a result, our best model could have as
high an adjusted R2 and as many significant daily intercepts as possible.
An example illustrating the main process has been provided in Table S1.
All of the statistical tests were at the significance level α=0.05, but we
also decreased the significance level in some cases where no model
emerged at α=0.05 (i.e. decreasing α to 0.4 for AOD t-test for Clusters
4, 9, and 10 and decreasing α to 0.1 for t-tests of other predictors and
daily intercepts for Cluster 10). The first-stage TFER model can be ex-
pressed as follows:

= + + +

+ + +

+ + +

+ + +

+ +

+ +

+ + +

+ +

PM AOD PBLH RH PBL

TEMP SRH PRCP

PRCP Lag WS WS Lag

EWS SWS WWS

NWS EWS Lag

SWS Lag WWS Lag

NWS Lag NDVI EVI

NO Lag

_

_ _

_

_ _

_

_

gd d AOD gd PBLH gd c RH PBL gd c

TEMP gd c SRH gd c PRCP gd c

PRCP Lag gd c WS gd c WS Lag gd c

EWS gd c SWS gd c WWS gd c

NWS gd c EWS Lag gd c

SWS Lag gd c WWS Lag gd c

NWS Lag gd c NDVI gd c EVI gd c

NO Lag gd c gd

2.5 _ _ _

_ _ _

_ _ _ _ _

_ _ _

_ _ _

_ _ _ _

_ _ _ _

_ 2 _2 (4)

where PM gd2.5 , AODgd, PBLHgd c_ , RH PBL_ gd c_ , TEMPgd c_ , SRHgd c_ ,
PRCPgd c_ , WSgd c_ , EWSgd c_ , SWSgd c_ , WWSgd c_ , NWSgd c_ , NDVIgd c_ , and
EVIgd c_ are the daily averaged PM2.5 concentrations, AOD, PBLH,
RH_PBL, TEMP, SRH, PRCP, WS, EWS, SWS, WWS, NWS, NDVI, and EVI
at grid g during day d, respectively; PRCP Lag_ gd c_ , WS Lag_ gd c_ ,
EWS Lag_ gd c_ , SWS Lag_ gd c_ , WWS Lag_ gd c_ , NWS Lag_ gd c_ , and
NO Lag_ gd c2 _ are the PRCP, WS, EWS, SWS, WWS, NWS, and NO2 at grid
g during day d-1, respectively; AOD, PBLH , RH PBL_ , TEMP, SRH , PRCP,

PRCP Lag_ , WS, WS Lag_ , EWS, SWS, WWS, NWS, EWS Lag_ , SWS Lag_ ,
WWS Lag_ , NWS Lag_ , NDVI , EVI , and NO Lag_2 are coefficients for AOD,
PBLH, RH_PBL, TEMP, SRH, PRCP, PRCP_Lag, WS, WS_Lag, EWS, SWS,
WWS, NWS, EWS_Lag, SWS_Lag, WWS_Lag, NWS_Lag, NDVI, EVI, and
NO2_Lag, respectively; d is the intercept of day d; _c indicates that the

variable was incorporated in spatial cluster c; and gd is the error term at
grid g during day d.

We did not let NDVI and EVI appear in the same model to avoid
potential multi-collinearity. Since RH_PBL has poor spatiotemporal
coverage over western China (Fig. S5), we did not consider it when we
constructed the TFER models for those spatial clusters located in the
west.

We calibrated the first-stage TFER model by applying the model-
fitting dataset in Eq. (4). The residuals were obtained accordingly. In
the second stage, we built a series of GWR models using those residuals
as the dependent variable and VIIRS EDR AOD as the independent
variable. By adding the estimated residuals from the second-stage GWR
model to the PM2.5 predictions from the first-stage TFER model, we
eventually obtained the final PM2.5 predictions with most spatio-
temporal heterogeneities captured. The second-stage GWR modeling
was conducted daily for each spatial cluster and can be expressed as
follows:

= + +PM resi AOD_ gd gd AOD gd gd gd2.5 0, , (5)

where PM resi_ gd2.5 denotes the residual from the first stage at grid g
during day d; AODgd is VIIRS EDR AOD at grid d during day d; gd0, and

AOD gd, are the location-dependent intercept and slope, respectively; and
gd is the error term at grid g during day d. For convenience, ab-
breviations and full names of all the variables appearing in Eqs. (5) and
(6) have been provided in Table S2.

We used the weighted least squares method to calibrate the coeffi-
cients of the GWR model. The weight was a kernel function value of the
distance between regression and data points. According to previous
studies, the parameter estimation process is very sensitive to the
bandwidth, to an extent where the kernel function plays a role (Tan,
2007). In this study, we used the Gauss kernel function and calculated
the best adaptive bandwidth for each regression point by minimizing
the CV value since the ground PM2.5 monitoring sites employed in this
study were unevenly distributed spatially.

While the minimum number of the model-fitting data records re-
quired per day is two to fit an intercept and a slope, previous studies
have shown that the practice of directly adding GWR models could
cause model overfitting (i.e. the model performs much better in a
model-fitting dataset than a non-model-fitting dataset) if that number is
too small (Hu et al., 2014; Wu et al., 2016). Therefore, we conducted a
sensitivity analysis to identify the best threshold for the minimal
number of model-fitting data records per day for all spatial clusters.
This threshold should have the characteristic of minimizing the over-
fitting degree at the cost of losing a minimal number of samples.

2.7. Model validation

We performed a regression of the observed and predicted PM2.5

concentrations from the model fitting to obtain the R2, mean prediction
error (MPE), and root mean squared error (RMSE) and assessed the
model performance on the model-fitting dataset. We conducted a ten-
fold CV to assess the model performance on the non-model-fitting da-
taset in three steps. First, we randomly split the model-fitting dataset
into ten subsets with approximately 10% of the model-fitting dataset in
each subset. Second, we withheld one subset, performed model fitting
with the remaining nine subsets, and used the fitted model to predict
the withheld subset. We repeated this process ten times to ensure that
all the subsets were predicted. Third, we performed a regression of the
observed PM2.5 and predicted PM2.5 concentrations from the ten-fold
CV and obtained another set of R2, MPE, and RMSE. According to the
process of the ten-fold CV, the observed PM2.5 concentrations were not
from the model-fitting dataset but the non-model-fitting dataset; thus,
we were able to assess the model performance on the non-model-fitting
dataset. Meanwhile, we could assess the model overfitting degree by
comparing the R2, MPE, and RMSE from the model fitting and ten-fold
CV.
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Theoretically, residuals from a reliable statistical model should not
correlate sequentially. As for spatial data, residuals should not present
spatial autocorrelation. Therefore, we calculated the Moran’s I of the
residuals from the first-stage and overall model, respectively, to assess
the reliability of the model.

2.8. PM2.5 prediction

While we could readily obtain the daily PM2.5 predictions at loca-
tions where PM2.5 observations were unavailable by applying the
overall model to the regression mapping dataset, the predictions may be
abnormally low or high. To overcome this defect, we reset the abnor-
mally low and high predictions to 60% and 120% of the PM2.5 ob-
servations. Previous land use regression (LUR) models and satellite
remote sensing retrieval models have proven that this practice is rea-
sonable and effective (Wu et al., 2015, 2016). We obtained the
monthly, seasonal, and annual PM2.5 estimates by averaging the daily
PM2.5 estimates for each month, season, and the whole year. We then
analyzed the spatiotemporal characteristics of the PM2.5 concentrations
based on these estimates.

3. Results

3.1. Spatial division results

Fig. 3 illustrates the relationship between the threshold for the dual
distance and the number of spatial clusters. As mentioned before, the
threshold should not be set too high or too low to avoid having too
many or too few spatial clusters. We thus decided to find a threshold
between 0.2 and 0.3. We found 0.25 was a good threshold, below and
above which the number of spatial clusters changed quickly and slowly,
respectively. Although 0.25 may not be a perfect value, we think it is
good enough, and our model fitting and validation results also proved
it. We obtained 13 spatial clusters (Fig. 4) by using a threshold of 0.25
for dual distances and merging the isolated spatial clusters. Among the
13 spatial clusters, some of them (e.g. Cluster 3) had boundaries similar
to those of natural basins, while others (e.g. Clusters 6 and 11) had
boundaries similar to those of urban agglomerations or provinces.
Therefore, both natural and anthropogenic factors influence PM2.5

concentrations. The practice of spatial division based on the inherent
characteristics of PM2.5 concentrations could simultaneously reflect
these two categories of influencing factors.

3.2. Model fitting results

Table 1 shows the coefficient estimates of the first-stage TFER
model. The sensitivity analysis determined that the minimum number
of model-fitting data records should be greater than six (see Section
3.3). We did not use this threshold for Clusters 4, 9, 10, 13, and 14
because the total number of model-fitting data records of these spatial
clusters was not abundant. Although at least three model-fitting data
records (N > 2) were set to enable the ten-fold CV, the total number of
model-fitting data records for Clusters 13 and 14 was still insufficient.
Therefore, we decided not to predict the ground-level PM2.5 con-
centrations in Clusters 13 and 14, but in Clusters 4, 9, and 10, using
only the first-stage TFER model.

Fig. 4 and Table 1 illustrate how PM2.5 emission-related factors and
meteorological conditions spatially influenced the PM2.5-AOD re-
lationship. PBLH mainly appeared in the Middle-Upper Yangtze River
plain and coastal regions with values approaching zero, indicating a
weak role in the PM2.5-AOD relationships. RH_PBL mainly appeared in
coastal regions and Inner Mongolia with positive or negative signs.
Theoretically, high RH_PBL increases the size and light extinction effi-
ciencies of particles, such as ammonium sulfate and ammonium nitrate,
leading to high PM2.5 concentrations; however, PM2.5 measurements
take only dry particle mass into account under controlled relative hu-
midity conditions (≈ 40%) (Hu et al., 2013; Liu et al., 2005). There-
fore, in Clusters 1 and 7, where the general relative humidity level is
always low, the same AOD value under a higher RH_PBL level means a
lower PM2.5 concentration, whereas the situation is the opposite in
Cluster 2, where the general relative humidity level is always high.
TEMP appeared in most spatial clusters with either positive or negative
signs. This could be attributed to the varying relationship between
temperature and the generation of secondary particles near the surface,
such as sulfate and nitrate. These secondary particles are the precursors
of PM2.5, and their concentrations can either increase or decrease when
the temperature becomes higher depending on regions and seasons (Liu
et al., 2007; Megaritis et al., 2013; Tai et al., 2010; Yang et al., 2017).
SRH appeared in three clusters located in Central China. It was posi-
tively correlated with PM2.5 concentrations because high SRH increases
water-insoluble organic carbon to elemental carbon ratios, presumably
suggesting the formation of more secondary organic aerosols (Cheng
et al., 2015). PRCP played a positive role in reducing PM2.5 con-
centrations due to its washing role. Nevertheless, it only appeared in
Clusters 7 and 10, indicating that precipitation is an effective variable

Fig. 3. The relationship between the threshold for the dual distance and the number of spatial clusters.
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where it is limited. In addition, it has no significant time lag because
PRCP_Lag did not appear in any spatial clusters. WS and WS_Lag ap-
peared with both positive and negative signs, indicating different im-
pacts of wind speed on PM2.5-AOD relationships in different spatial
clusters. This can be attributed to the fact that the ground-level PM2.5

concentrations are more sensitive to wind speed than AOD (Zheng
et al., 2017), which means the ground PM2.5 concentrations will be
higher or lower if more air pollutants are transported in or out by wind
speed under the same AOD level. We further analyzed this using the
wind direction data. EWS and EWS_Lag appeared in multiple spatial
clusters with most of them having negative signs, indicating that east-
erly winds could always reduce PM2.5 concentrations. SWS and
SWS_Lag also appeared in multiple spatial clusters with non-lagged
forms having negative signs while lagged forms always having positive
signs, indicating that the effects of southerly winds on PM2.5 con-
centrations were subject to the time lag. The signs of WWS and
WWS_Lag were negative in the western spatial clusters, such as Clusters
3, 4, and 11, whereas the signs of WWS and WWS_Lag were positive in
the central and eastern spatial clusters, such as Clusters 5 and 6. This
implies that westerly winds may bring pollutants from the west to the
east. NWS and NWS_Lag appeared in several spatial clusters, but their
regularity was not evident. NDVI mainly appeared in southern China
with both positive and negative signs. Since vegetation generates over
90% of volatile organic compounds (VOC) emissions on the global scale
(Guenther et al., 1995), and these emissions can further form secondary
aerosols, high NDVI would mean high PM2.5 concentrations. High NDVI
could also mean a higher rate of particle deposition on leaves, thus
reducing PM2.5 concentrations. In this study, most NDVI signs were
reported as negative, indicating that the leaf deposition role has by far
the greater impact on PM2.5. EVI appeared only in Cluster 6, indicating
that it is more effective than NDVI in northeastern China. NO2_Lag
appeared in Clusters 1, 5, and 7 with positive signs, indicating that its
lagged positive role in increasing the PM2.5 concentration occurred in

the North China Plain and coastal regions. Varying coefficients among
different spatial clusters suggest that the first-stage TFER model cap-
tured the spatial heterogeneity of the PM2.5-AOD relationship.

Fig. 5 illustrates the distribution of the daily intercepts of the first-
stage TFER models in different clusters. The daily intercepts in winter
and spring were always larger than those in summer and autumn. This
indicates that the PM2.5 concentrations in winter and spring would be
higher than the corresponding concentrations in summer and autumn
under the same conditions, since the first-stage TFER model only had
varying intercepts. These varying daily intercepts in the same spatial
cluster also suggest that the first-stage TFER model captured the tem-
poral heterogeneity of the PM2.5-AOD relationship.

Fig. 6 illustrates the seasonally averaged AOD coefficients from the
second-stage GWR model. Winter always had positive coefficients,
correcting the underestimation of the first-stage TFER model. Spring
had more negative coefficients than positive coefficients, correcting the
overestimation of the first-stage TFER model. Summer and autumn had
similar numbers of positive and negative coefficients. Spatially, high
AOD coefficients were mainly distributed in the North China Plain and
coastal areas. High PM2.5 concentrations in these areas may be under-
estimated in the first-stage TFER model, but the second-stage GWR
model amended it. The seasonal and spatial distributions of the AOD
coefficients indicate that the second-stage GWR model further captured
the temporal and spatial heterogeneities of the PM2.5-AOD relationship.

3.3. Model validation results

Fig. 7 illustrates how the minimal number of model-fitting data
records per day influenced the model performance. While the total
number of the samples decreased as the minimal number of model-
fitting data records per day increased, R2, MPE, RMSE, slope, and in-
tercept of the first-stage TFER model present a slight change during
both model fitting and ten-fold CV. The R2, MPE, RMSE, slope, and

Fig. 4. Spatial division results for developing PM2.5 satellite remote sensing retrieval models.
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intercept of the overall model also exhibit a slight change during model
fitting. During ten-fold CV, however, before the value of N > 6, R2

increased rapidly, MPE and RMSE decreased rapidly, and the slope and
intercept rapidly approached one and zero, respectively. After the value
of N > 6, the speed at which these changes occurred decreased. This
indicates that the difference between the performance of the overall
model during model fitting and ten-fold CV decreased as the minimal
number of model-fitting data records increased; i.e. the over-fitting
degree of the model declined. We chose N > 6 as the threshold because
the changing speed before and after that value differed greatly, which
means that N > 6 can minimize the overfitting degree at the cost of
losing a minimal number of samples.

Fig. 8 illustrates the model validation results when at least seven
model-fitting data records existed per day. While the over-fitting degree
of the first-stage TFER model was less than that of the overall model
(e.g. R2 decreased 6.45% and 26.83% from model fitting to ten-fold CV
for the first-stage TFER model and the overall model, respectively), the
overall model performed better than the first-stage TFER model during
both model fitting and ten-fold CV. Moreover, the overall model cap-
tured the PM2.5 concentrations that were larger than 250 μg/m3, which
were not found in the first-stage TFER model. Therefore, the practice of
adding the second-stage GWR model was necessary and meaningful. It
not only improved the model accuracy but also enhanced the model
capability of retrieving high PM2.5 concentrations. The satisfactory
model performance also proves the validity of the assumption proposed
in Section 2.5.

Fig. 9 illustrates the temporal distribution of the spatial auto-
correlation test results for the daily residuals from the first-stage TFER
model and the overall model. It demonstrates the necessity of adding
the second-stage GWR model. Although the daily residuals on some

days still presented significant, though much weaker, spatial auto-
correlation after adding the second-stage GWR model, the proportion of
the days that the daily residuals were significantly spatially auto-cor-
related declined greatly during both model fitting and ten-fold CV. In
short, adding the second-stage GWR model improved the model relia-
bility.

Table 2 shows the model performance in each spatial cluster.
Clusters 1, 2, 3, and 8 had relatively high CV R2 values that were larger
than 0.6, followed by Clusters 5 and 6 with CV R2 values greater than or
approaching 0.5. The CV R2 values of Clusters 7 and 11 were slightly
lower because these two clusters are not characterized by strong urban-
industrial conditions. The satellite linkage with the ground cannot be
well guaranteed if the principal contribution to AOD does not come
from the particles near the surface. Clusters 4, 9, and 10 only had the
first-stage TFER model. Clusters 4 and 10 had a relatively low CV R2

while Cluster 9 had a relatively high CV R2. The fluctuations in the R2

values may be attributed to insufficient model-fitting data records.

3.4. Predictions of PM2.5 concentrations

The resulting daily PM2.5 estimates were not temporally or spatially
complete due to missing VIIRS EDR AOD data. As a result, uncertainties
emerged when deriving the monthly, seasonal, and annual PM2.5 esti-
mates from the daily PM2.5 estimates. We calculated the correlation
coefficients between the PM2.5 estimates and measurements at the
ground-based PM2.5 monitoring sites and found that all of the correla-
tion coefficients were larger than 0.5 (Fig. S6) at the monthly, seasonal,
and annual scales. Therefore, the monthly, seasonal, and annual PM2.5

estimates could be used to reveal the spatiotemporal characteristics of
the PM2.5 concentrations.

Table 1
Coefficient estimates of the first-stage TFER model.

Cluster N Minimum number of N per day Coefficients

AOD PBLH RH_PBL TEMP SRH PRCP PRCP_Lag

1 3097 N > 6 16.04 0.01 −27.75 0.06
2 2354 N > 6 18.07 0.01 27.43
3 2013 N > 6 23.24 0.01 0.14 0.54
4 357 N > 2 6.45* −0.15
5 7142 N > 6 21.81 0.22 0.66
6 2753 N > 6 16.68 0.07
7 1307 N > 6 12.13 −30.26 0.22 0.69 −0.06
8 3421 N > 6 18.00 0.00 0.10
9 262 N > 2 −2.38**

10 460 N > 2 −5.91*** −0.44 −0.36
11 901 N > 6 17.84 0.06
13 57 N > 2 14.36 −0.10
14 6 N > 2 −34.80 −0.04

Cluster N Minimum number of N per day Coefficients

WS WS_Lag EWS SWS WWS NWS EWS_Lag SWS_Lag WWS_Lag NWS_Lag NDVI EVI NO2_Lag

1 3097 N > 6 −0.18 0.07 0.10 0.13 −7.39 0.15
2 2354 N > 6 −0.17 −0.17 −0.10 −4.95
3 2013 N > 6 −0.23 −0.14 –23.17
4 357 N > 2 −0.21
5 7142 N > 6 −0.05 −0.08 −0.08 0.09 0.04 0.07 0.54
6 2753 N > 6 0.18 0.05 0.15 −0.09 −0.10 −0.12 −0.28 −8.44
7 1307 N > 6 0.24 0.04 −12.49 1.13
8 3421 N > 6 −0.06 −0.07 −12.20
9 262 N > 2 −0.08 −11.37
10 460 N > 2
11 901 N > 6 −0.15 −0.13 −41.84
13 57 N > 2 −0.24 56.08
14 6 N > 2 −0.54

* p=0.361;
** p= 0.494;
*** p= 0.315.
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Figs. 10 and S7 illustrate the spatial distribution of the seasonal,
annual, and monthly PM2.5 estimates. Seasonally, the ground-level
PM2.5 concentrations were high in winter, low in summer, and mod-
erate in spring and autumn. Spatially, high PM2.5 concentrations mainly
occurred to the east of Hu’s line (Hu, 1935) and north of the Yangtze
River, while the core polluted area was in the North China Plain. The
core polluted area expanded from October to January and contracted
from March to September. February observations were not conclusive
due to the missing data.

4. Discussion

4.1. Comparison with the spatially structured fixed model

To further demonstrate the advantage of the spatially structured
adaptive two-stage model (hereafter referred to as the adaptive model),

we developed a spatially structured fixed two-stage model (hereafter
referred to as the fixed model). The fixed model considered all of China
as a whole, tested all possible TFER models, and selected the one with
the highest adjusted R2 value that passed the statistical tests. It then
developed daily GWR models to correct the daily residuals, using AOD
as the independent variable. The only difference between the adaptive
model and the fixed model was that the former took advantage of the
spatial clusters analyzed from PM2.5 measurements. The sensitivity
analysis of the adaptive model showed that each spatial cluster should
have N > 6 model-fitting data records per day. Therefore, the
minimum and maximum numbers of model-fitting data records per day
for all of China should fall within [7, 77]. We used the lower and upper
limit of this range to conduct the model fitting and ten-fold CV, re-
spectively. The results are shown in Figs. S8 and S9. Comparisons be-
tween Figs. S8. S9 and 8 show that the adaptive model outperformed
the fixed model during both model fitting and ten-fold CV for Stage I

Fig. 5. Distribution of daily intercepts for the first-stage TFER models in different clusters. Note that most intercepts were significant at α= 0.05, and thus their p-
values were not shown.
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and model fitting for Stage II. Regarding the ten-fold CV of Stage II,
while the R2 value of the fixed model was similar to that of the adaptive
model when the fixed model required at least 77 model-fitting data
records per day, the total number of model-fitting data records was
smaller, and the MPE and RMSE values were larger, likely because of
their different practices for requiring a minimum number of model-
fitting data records per day. The number of model-fitting data records
per day for China from the adaptive model should fall within [7, 77]
because its requirement for the minimum number of model-fitting data
records per day did not apply on every spatial cluster simultaneously. If
a spatial cluster met the condition, it was included in the model;
otherwise, it was excluded. Therefore, the total number of model-fitting
data records of the adaptive model outweighed that of the fixed model
when it required at least 77 model-fitting data records per day. In ad-
dition, the practice of requiring a minimum number of model-fitting
data records per day for the adaptive model was more likely to produce
spatially evenly distributed model-fitting data records than that of the
fixed model. Therefore, smaller MPE and RMSE values of the adaptive
model were obtained. In short, the development of the adaptive model
was necessary.

The performance improvement from the second-stage GWR model
of the adaptive model was worse than that of the fixed model because
the model structure varied across the spatial clusters when the first-
stage TFER models were constructed; thus, both the spatial and tem-
poral heterogeneities of the PM2.5-AOD relationships were captured by
the adaptive model in Stage I. The GWR coefficient analysis in Section
3.2 shows that the adaptive model developed in this study could further
capture the spatiotemporal heterogeneities in Stage II.

4.2. Potential applications of this study

Potential applications of this study are based on the spatially
structured adaptive two-stage model and resulting PM2.5 estimates. The
model developed in this study can be applied to other satellite-retrieved
AOD products and extended to other regions and periods. For example,
using other products like MODIS AOD, we could develop the corre-
sponding spatially structured adaptive two-stage models for the year
2014 simply by substituting VIIRS EDR AOD with data from these
products. We could develop similar adaptive models for other countries
or regions that share similar characteristics with China, such as the
United States of America and Southeast Asia, using the model steps
described in Section 2. If we assume that PM2.5-AOD relationships do
not change at all or change only slightly over the years, we could di-
rectly apply the spatially structured adaptive two-stage model devel-
oped in this study to China in other years. While this practice is valid for
producing historical PM2.5 data for China, as the national ground-based
PM2.5 monitoring network was not built until 2012, the uncertainties
associated with it should be considered, especially for the earlier years.

The resulting PM2.5 estimates in this study had a higher spatial re-
solution (6 km×6 km) than in previous studies that used the 10 km
MODIS AOD or the 17.6 km MISR (Multiangle Imaging
SpectroRadiometer) AOD. Van Donkelaar et al. (2016) estimated a long
time-series of global PM2.5 estimates using the AOD products from
MODIS, MISR, and SeaWiFS instruments and a combined geophysical-
statistical method. We downloaded their results for 2014 (http://fizz.
phys.dal.ca/~atmos/martin/?page_id=140) and replotted it with our
results using the same color scale (Fig. S10). Fig. S10 shows that the
PM2.5 values from our estimates are slightly higher than those from van

Fig. 6. Seasonally averaged AOD coefficients from the second-stage GWR model.
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Donkelaar et al. (2016) over the whole study domain. Fig. 10 also
shows that the observed PM2.5 values are even higher than the PM2.5

estimates in our results. This, to some extent, indicates that our esti-
mates are closer to the real PM2.5 pollution level. Nevertheless, the
spatiotemporal coverage of our results was inferior, and thus more

efforts should be made to improve the spatiotemporal coverage of the
original VIIRS EDR AOD. In short, the resulting PM2.5 estimates in this
study will advance the epidemiological studies and pollution control
policies in China by revealing more accurate spatial details.

Fig. 7. The influence of the minimal number of model-fitting data records per day on the model performance.

Fig. 8. Model validation results when greater than six model-fitting data records existed per day.
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4.3. Limitations and prospects

Several limitations associated with this study are discussed here and
should addressed in the future. First, we did not retrieve PM2.5 con-
centrations over Clusters 13 and 14 due to the limited number of model-
fitting data records. We could overcome this limitation by applying the
spatially structured adaptive two-stage model on other satellite-re-
trieved AOD products or on an integrated product that has higher
spatiotemporal coverage. A larger number of ground-level PM2.5 mon-
itoring data records will also help solve this problem. Second, we noted
that the CV R2 of some clusters were not satisfactory due to insufficient
model-fitting data records even with both high- and medium-quality
AOD. Another reason is that some spatial clusters, such as Cluster 7,
lacked strong urban-industrial conditions, and thus the linear linkages
between AOD and ground PM2.5 concentrations were weak.
Nonparametric machine learning models usually involve less restrictive
assumptions and have demonstrated great potential for estimating ac-
curate PM2.5 concentrations from satellite-retrieved AOD (Hu et al.,
2017; Li et al., 2017; Xiao et al., 2018; Zhang et al., 2018). Recognizing
the natural match of machine learning models and remotely sensed big
data (Mountrakis et al., 2018), we are more likely to improve the ac-
curacy of retrieved PM2.5 concentrations by using machine learning
models. Finally, due to the limitations of data and calculation resources,

not all useful auxiliary variables that have been proposed and proven
effective in previous studies have been collected and examined, and
some of the auxiliary variables are also not in their best form (e.g. it
would be much better to decompose daily average wind speed using the
main wind direction of the day, but instead, we used the maximum
wind speed and corresponding wind direction). We firmly believe that
the model structure for each spatial cluster will be more robust when
more reasonable variables are included.

5. Conclusion

In this study, we aimed to develop a spatially structured adaptive
model to estimate ground-level PM2.5 concentrations at a 6-km spatial
resolution in China. To our knowledge, this is one of the earliest studies
that examined the performance of VIIRS AOD in estimating ground-
level PM2.5 concentrations on the national scale and using the newly
developed spatially structured adaptive two-stage model. The results
are satisfactory despite some limitations. The main conclusions are as
follows.

i. The inherent characteristics of ground-level PM2.5 concentrations
produced 13 spatial clusters using the UPGMA cluster algorithm.
The boundaries of these 13 spatial clusters indicate that both

Fig. 9. Temporal distribution of spatial autocorrelation tests for daily residuals from the first-stage TFER model and the overall model.

Table 2
Performance of the first-stage TFER model and the overall model in each cluster.

Cluster N Minimum number
of N per day

The first-stage TFER model The overall model

Model-
fitting R2

CV R2 Model-
fitting MPE

CV MPE Model-
fitting
RMSE

CV RMSE Model-
fitting R2

CV R2 Model-
fitting MPE

CV MPE Model-
fitting
RMSE

CV RMSE

1 3097 N > 6 0.64 0.60 14.34 14.98 19.51 20.43 0.87 0.69 8.02 12.61 11.81 18.01
2 2354 N > 6 0.67 0.64 11.66 12.24 15.78 16.48 0.85 0.66 7.25 11.58 10.53 16.07
3 2013 N > 6 0.68 0.64 14.20 15.09 19.49 20.70 0.86 0.66 8.85 14.03 13.00 19.91
4 357 N > 2 0.45 0.23 12.67 15.26 18.51 21.89
5 7142 N > 6 0.53 0.50 17.96 18.54 26.18 27.16 0.78 0.56 11.35 16.33 18.11 25.27
6 2753 N > 6 0.57 0.52 13.21 13.89 20.57 21.61 0.77 0.49 9.24 13.83 14.84 22.34
7 1307 N > 6 0.57 0.49 9.33 10.17 12.51 13.67 0.76 0.31 6.58 11.46 9.25 15.85
8 3421 N > 6 0.63 0.59 15.22 16.02 21.08 22.19 0.82 0.60 9.87 15.38 14.81 21.94
9 262 N > 2 0.86 0.75 5.44 7.32 7.58 10.21
10 460 N > 2 0.45 0.19 12.77 14.96 17.12 20.72
11 901 N > 6 0.62 0.54 9.81 10.74 13.20 14.47 0.81 0.41 6.28 11.69 9.27 16.28
13 57 N > 2 0.81 0.58 4.62 6.67 6.59 9.69
14 6 N > 2 0.72 0.07 8.70 15.51 10.76 19.94
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natural and anthropogenic factors influence PM2.5 concentrations.
ii. ”Seven” was a good threshold number of model-fitting data records

for constructing the spatially structured adaptive two-stage model.
The overall model fitting and ten-fold CV R2 values were 0.82 and
0.60, respectively, when using this threshold.

iii. Correlation coefficients between the PM2.5 estimates and observa-
tions all exceeded 0.5 at the monthly, seasonal, and annual scales.
High PM2.5 concentrations mainly occurred to the east of Hu’s line
and north of the Yangtze River in winter.
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