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Abstract: Satellite-retrieved aerosol optical depth (AOD) data have been widely used to predict
PM2.5 concentrations. Most of their spatial resolutions (~1 km or greater), however, are too coarse to
support PM2.5-related studies at fine scales (e.g., urban-scale PM2.5 exposure assessments). Space-time
regression models have been widely developed and applied to predict PM2.5 concentrations from
satellite-retrieved AOD. Their accuracies, however, are not satisfactory particularly on days that lack
a model dataset. The present study aimed to evaluate the effectiveness of recent high-resolution
(i.e., ~750 m at nadir) AOD obtained from the Visible Infrared Imaging Radiometer Suite instrument
(VIIRS) Intermediate Product (IP) in estimating PM2.5 concentrations with a newly developed nested
spatiotemporal statistical model. The nested spatiotemporal statistical model consisted of two parts: a
nested time fixed effects regression (TFER) model and a series of geographically weighted regression
(GWR) models. The TFER model, containing daily, weekly, or monthly intercepts, used the VIIRS IP
AOD as the main predictor alongside several auxiliary variables to predict daily PM2.5 concentrations.
Meanwhile, the series of GWR models used the VIIRS IP AOD as the independent variable to correct
residuals from the first-stage nested TFER model. The average spatiotemporal coverage of the VIIRS
IP AOD was approximately 16.12%. The sample-based ten-fold cross validation goodness of fit
(R2) for the first-stage TFER models with daily, weekly, and monthly intercepts were 0.81, 0.66, and
0.45, respectively. The second-stage GWR models further captured the spatial heterogeneities of the
PM2.5-AOD relationships. The nested spatiotemporal statistical model produced more daily PM2.5

estimates and improved the accuracies of summer, autumn, and annual PM2.5 estimates. This study
contributes to the knowledge of how well VIIRS IP AOD can predict PM2.5 concentrations at urban
scales and offers strategies for improving the coverage and accuracy of daily PM2.5 estimates on days
that lack a model dataset.
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1. Introduction

PM2.5 (fine particles with an aerodynamic diameter ≤ 2.5 µm) produced by both natural and
anthropogenic sources [1] is one of the main causes of ambient air pollution, which is thought to
lead to approximately 3.3 million deaths per year worldwide [2,3]. Cities within China, India, and
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other developing countries have some of the highest levels of mortality/morbidity associated with
PM2.5 due to the effects of atmospheric transport and international trade [4]. PM2.5 also influences
atmospheric visibility and climate change [5]. To avoid the negative effects of PM2.5, a series of laws,
regulations, and standards have been implemented in various countries [6]. The determination of
ground-level PM2.5 concentrations with high accuracy, resolution, and coverage, either from measuring
or modeling [7,8], is critical for accurate assessment of both PM2.5-related effects and policy measures.
Inferring ground-level PM2.5 concentrations from satellite-retrieved aerosol optical depth (AOD) data
is an effective tool that can partially fill the monitoring gap left by ground monitors, which has
led to its increase in popularity for predicting PM2.5 concentrations [9–11] and PM2.5-related health
effects [12,13].

A handful of satellite-retrieved AOD are available to predict PM2.5 concentrations. These can
be divided into fine-resolution (i.e., <10 km) and coarse-resolution (i.e., ≥10 km) AOD according
to their spatial resolutions [14]. Fine-resolution AOD can reveal more spatial details on PM2.5

pollution than coarse-resolution AOD, benefitting urban-scale epidemiological studies. Existing
fine-resolution AOD mainly include 3-km MODIS (Moderate Resolution Imaging Spectroradiometer)
AOD [15,16], 750-m/6-km VIIRS (Visible Infrared Imaging Radiometer Suite) AOD [17,18], 1-km
MAIAC (Multi-Angle Implementation of Atmospheric Correction) AOD [19,20], and 160-m GF
(Gaofen) AOD [21]. The 750-m VIIRS IP (Intermediate Product) AOD has the highest spatial resolution
(better than 1 km) among those that can be directly accessed and downloaded. Its accuracy has been
evaluated on urban [22], regional [23], and national scales [24]. Although the VIIRS IP AOD was
somewhat inferior to that of MODIS or GOCI (Geostationary Ocean Color Imager) in terms of accuracy,
a good proportion of the VIIRS IP AOD retrievals fell within the reference expected error envelope
(e.g., 33% in Beijing from 2012 to 2013 [23]). With this profile, the VIIRS IP AOD is believed to have
the potential to benefit exposure studies at fine scales because of its high spatial resolution [22–24].
Although it has been successfully used to depict the temporal and spatial pattern of AOD in China [24],
its potential for directly estimating PM2.5 concentrations has been tested only on a limited basis.

Geophysical models [25,26], statistical models, and machine learning models [27–29] are the
three main approaches to predicting PM2.5 concentrations from satellite-retrieved AOD. Compared
with geophysical and machine learning models, statistical models are simpler and can produce
PM2.5 estimates with relatively high accuracy. As a result, statistical models have experienced rapid
development, evolving from simple linear regression models [30], in earlier times, to the present
advanced statistical models. Representatives of advanced statistical models include linear mixed effects
models, which allow temporal heterogeneities [31], geographically weighted regression (GWR) models,
which capture spatial heterogeneities [32,33], and space-time regression models, which consider
spatiotemporal heterogeneities [34,35]. Statistical models, however, require ground monitored PM2.5

data to perform model calibration and validation. Consequently, it is still hard to obtain satisfactory
PM2.5 estimates for those areas or days that lack a model dataset.

The present study aimed to evaluate the effectiveness of the 750-m VIIRS AOD in estimating
PM2.5 concentrations with a newly developed nested spatiotemporal statistical model. The model
enabled spatiotemporal heterogeneities of PM2.5-AOD relationships to be captured and aimed to
improve the coverage and accuracy of PM2.5 estimates for days without a model dataset. The rest of
the paper is organized as follows. Data sources and model development and validation procedures are
described in the Data and Methods section. The Results and Discussion section provides a description
of model performance, PM2.5 estimates, and associated uncertainties. Conclusions are presented at the
end of the paper.
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2. Materials and Methods

2.1. Study Area and PM2.5 Measurements

Beijing, the capital city of China, was chosen as the study area (Figure 1). It is situated in the
northern portion of the North China Plain and has 16 districts. The Beijing Municipal Environmental
Monitoring Center (BMEMC) is responsible for measuring and distributing PM2.5 concentrations.
A total of 35 monitoring sites have been established across the domain of Beijing, with 23 sites for urban
environmental assessment (UEA), six sites for regional background transmission (RBT), five sites for
traffic pollution control (TPC), and one site for urban cleanliness comparison (UCC). UEA stations serve
to assess the average level and variations in air quality in the urban environment. RBT stations serve
to represent the regional background level of air quality and the regional transmission of atmospheric
pollutants. RBT stations are distributed near the city boundaries to the northwest, northeast, east,
south, and southwest. TPC stations are all located in downtown areas and monitor the influence of
traffic on air quality. The sole UCC station represents the pollution level in urban areas assuming no
influence of urban activities. In this study, hourly PM2.5 measurements observed at all monitoring sites
in 2014 were downloaded from the BMEMC air quality releasing platform (http://zx.bjmemc.com.cn),
and daily averaged PM2.5 concentrations were calculated as the dependent variable.
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2.2. VIIRS IP AOD Retrievals

VIIRS is a cross-track scanning radiometer onboard the Suomi National Polar-Orbiting Partnership
(Suomi-NPP) satellite with a 1:30 pm local solar time ascending node. It is expected to continue the
decade-long measurement series initiated by MODIS. It contains three types of bands: imagery bands
(375 m at nadir), moderate bands (M bands, 750 m at nadir), and day/night bands (750 m across
scan). The VIIRS aerosol algorithms, with a heritage from MODIS aerosol algorithms, use M bands to
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produce the full set of aerosol parameters contained in the IP, including AOD at 550 nm [36]. VIIRS
IP AOD data (contained in IVAOT files named ‘faot550’) for 2014 in Beijing were collected from the
Comprehensive Large Array-data Stewardship System (CLASS) (www.class.noaa.gov). Corresponding
terrain-corrected geo-location files (contained in GMTCO files named ‘Longitude’ and ‘Latitude’) for
these AOD data were also downloaded from CLASS for geometric correction purposes. To minimize
the potential negative effects of deviations in VIIRS IP AOD retrievals on PM2.5 estimates, only good
AOD data (quality assurance flag = 0) were retained.

2.3. GEOS FP Meteorological Data

Meteorological conditions influence and hence can improve PM2.5-AOD relationships [37]. Global
Earth Observing System Forward Processing (GEOS FP) gridded meteorological data for 2014 covering
Beijing were collected from the Dalhousie data archive (ftp://rain.ucis.dal.ca/ctm). GEOS FP is the
most recent validated GEOS system and provides meteorological fields at finer spatial (0.25◦ latitude
× 0.3125◦ longitude) and temporal resolution (1-h or 3-h) over China [38,39]. Downloaded files named
GEOSFP.YYYYMMDD.A1.025×03125.CH.nc, where YYYY is the year, MM is the two-digit month of
the year, and DD is the two-digit day of the month, have a time interval of one hour. These files contain
the planetary boundary layer height (PBLH) above the surface, temperature at 2 m above displacement
height (T2M), total surface precipitation flux (PRCP), surface level pressure (PS), eastward wind at 10 m
above displacement height (U10M), and northward wind at 10 m above displacement height (V10M)
from 0:30 UTC to 23:30 UTC. Values of these variables at 5:30 UTC were extracted to correspond to
the VIIRS overpass time. Downloaded files named GEOSFP.YYYYMMDD.A3dyn.025×03125.CH.nc
have a time interval of three hours and contain 72 layers of relative humidity from 1:30 UTC to 22:30
UTC. The mean value of relative humidity in PBLH (RH_PBL) between 4:30 UTC and 7:30 UTC was
extracted to correspond to the VIIRS overpass time.

2.4. Satellite-Retrieved NO2 and NDVI Data

Anthropogenic emissions and dry deposition on natural surfaces such as vegetation increase
or decrease PM2.5 concentrations [40,41] and hence can adjust PM2.5-AOD relationships. This study
selected NO2 from the previous day (NO2_Lag) as a proxy for anthropogenic emissions [42] and
Normalized Difference Vegetation Index (NDVI) as a reflection of variations in vegetation [43]. NO2

data for 2014 covering Beijing with a resolution at 0.25◦ × 0.25◦ and 1-d based on the Ozone Monitoring
Instrument were obtained from the Tropospheric Emission Monitoring Internet Service [44] (http:
//www.temis.nl/airpollution/no2col/no2regioomi_v2.php). NDVI data for 2014 covering Beijing
with a resolution of 1-km and 16-d based on MODIS sensors came from the Level-1 and Atmospheric
Archive and Distribution System (LAADS) (https://ladsweb.modaps.eosdis.nasa.gov/search/). Terra
(code: MOD13A2) and Aqua (code: MYD13A2) satellite observations were combined to improve the
temporal resolution to 8-d.

2.5. Data Integration

These multi-source data can be divided into point data (PM2.5 measurements) and raster data
(VIIRS IP AOD retrievals, GEOS FP meteorological data, and satellite-retrieved NO2 and NDVI data).
A 750 m × 750 m grid was created over Beijing, and the raster data were resampled to this grid using
the bilinear interpolation method. The cell values of the resampled raster data were then extracted to
the PM2.5 monitoring sites. Regression mapping and model datasets subsequently emerged.

2.6. Model Development and Validation

Based on previous two-stage models [11,17,35], a nested spatiotemporal statistical model was
developed in hopes of improving the accuracy and coverage of PM2.5 estimates as well as capturing
the spatiotemporal heterogeneities of PM2.5-AOD relationships. The nested spatiotemporal statistical
model was composed of two parts: a nested time fixed effects regression (TFER) model and a series

www.class.noaa.gov
ftp://rain.ucis.dal.ca/ctm
http://www.temis.nl/airpollution/no2col/no2regioomi_v2.php
http://www.temis.nl/airpollution/no2col/no2regioomi_v2.php
https://ladsweb.modaps.eosdis.nasa.gov/search/
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of GWR models with adaptive temporal scales. The first-stage nested TFER model was composed of
three separate TFER models with daily, weekly, and monthly intercepts, which shared similar model
structures as follows:

PM2.5,sd = λd + βAODAODsd + [βPBLHPBLHsd] + [βRH_PBLRH_PBLsd] + [βT2MT2Msd] +
[βPRCPPRCPsd] + [βPSPSsd] + [βU10MU10Msd] + [βV10MV10Msd] +

[βNO2_LagNO2_Lagsd] + [βNDVINDVIsd] + εsd,
(1)

PM2.5,sd = λw + βAODAODsd + [βPBLHPBLHsd] + [βRH_PBLRH_PBLsd] + [βT2MT2Msd] +
[βPRCPPRCPsd] + [βPSPSsd] + [βU10MU10Msd] + [βV10MV10Msd] + [βNO2_LagNO2_Lagsd] +

[βNDVINDVIsd] + εsd,
(2)

PM2.5,sd = λm + βAODAODsd + [βPBLHPBLHsd] + [βRH_PBLRH_PBLsd] + [βT2MT2Msd] +
[βPRCPPRCPsd] + [βPSPSsd] + [βU10MU10Msd] + [βV10MV10Msd] + [βNO2_LagNO2_Lagsd] +

[βNDVINDVIsd] + εsd,
(3)

where PM2.5,sd, AODsd, PBLHsd, RH_PBLsd, T2Msd, PRCPsd, PSsd, U10Msd, V10Msd, and NDVIsd
are the PM2.5 (µg/m3), AOD (unitless), PBLH (km), RH_PBL (unitless), T2M (K), PRCP (kg/m2/s2),
PS (hPa), U10M (m/s), V10M (m/s), and NDVI (unitless) at monitoring site s during day d; except
for PM2.5,sd, the remaining have their corresponding coefficients βAOD, βPBLH, βRH_PBL, βT2M, βPRCP,
βPS, βU10M, βV10M, and βNDVI; NO2_Lagsd is the NO2 (1015 molec/cm2) at monitoring site s during
day d-1, and βNO2_Lag is the corresponding coefficient; λd, λw, and λm are the nested intercepts for
each day, week, and month; [] around the variable and its coefficient indicates that the variable and its
coefficient might be incorporated according to the process of determining the best model structure as
described below; and εsd represents the error term at monitoring site s during day d.

To determine the best model structure for the TFER models with daily, weekly, and monthly
intercepts, all possible combinations of variables were examined. At the significance level of α = 0.05,
the TFER models with daily, weekly, and monthly intercepts whose slopes passed the statistical test
were first retained. These models were then sorted according to the number of statistically significant
intercepts and the adjusted goodness of fit (R2) in descending order. The best TFER models with daily,
weekly, and monthly intercepts that had the highest adjusted goodness of fit (R2) were eventually
determined from the top ten candidate models. Appendix A provides screenshots of these processes.
The TFER model with daily intercepts was used to predict PM2.5 concentrations for days that had a
model dataset, the model with weekly intercepts to predict PM2.5 concentrations for days that did
not have a model dataset, and the model with monthly intercepts to predict PM2.5 concentrations for
weeks that did not have a model dataset.

The second-stage GWR model used the residuals from the first-stage nested TFER model as the
dependent variable and the VIIRS IP AOD as the independent variable. Noting that the GWR model
was more suitable for analyzing spatial data, the second-stage GWR model was constructed using the
average values of dependent and independent variables during a specific period. The model structure
is as follows:

Residualsp = βIntercept,sp + βAOD,spAODsp + εsp, (4)

where Residualsp and AODsp are the averaged residual from the first-stage TFER model and the AOD
at monitoring site s during period p, respectively; βIntercept,sp and βAOD,sp are the location-specific
intercept and slope; and εsp is the error term at monitoring site s during period p.

The value of p can be selected according to different purposes. It could be set to one day to produce
daily PM2.5 estimates with higher accuracy, assuming that sufficient model datasets are available for
each day. This was not true in this study, and therefore a nested TFER model was developed in the
first stage. Five GWR models were calibrated for each of four seasons and for the entire year to obtain
an accurate spatial distribution of PM2.5 concentrations during these periods. Because the potential
maximum number of model datasets during this stage would be 35, which is a rather small number,
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the best fixed bandwidth for estimating coefficients was determined by minimizing the corrected
Akaike Information Criterion (AICc). The bandwidth controls the size of the kernel function of the
GWR model [45]. In other words, it specifies the spatial extent of the data points used to calibrate the
model. AICc was computed from a measure of the divergence between observed and fitted values and
a measure of model complexity [46]. The lower the AICc, the better was the model.

Sample-based ten-fold cross validation (CV) was used to assess the performance of the first-stage
nested TFER model. For the TFER models with daily, weekly, and monthly intercepts, the model
dataset was first randomly and equally split into ten subsets with the condition that all the days, weeks,
and months of each subset must appear in the remaining subsets. This condition was incorporated so
that predictions could be made for each subset using the model fitted from the other nine subsets. The
rest of the process was similar: repeat using nine subsets to fit the model and use the fitted model to
predict the remaining subset until all the subsets have been predicted; regress the predicted PM2.5 on
the observed PM2.5 and calculate the R2, mean prediction error (MPE), and root mean square error
(RMSE); and use these statistics to assess model performance.

2.7. PM2.5 Prediction

Daily PM2.5 estimates were readily obtained by combining the first-stage nested TFER model and
the regression mapping dataset. Note that these daily PM2.5 estimates had different accuracies because
different TFER models with daily, weekly, or monthly intercepts were used on certain days depending
on the availability of a model dataset. Therefore, different weights should be assigned to different
daily estimates when using them to derive seasonal and annual PM2.5 estimates. In this study, the
sample-based ten-fold CV R2 values of the TFER models with daily, weekly, and monthly intercepts
were used as the weight for the daily PM2.5 estimates calculated from those models. The weighted
seasonal and annual PM2.5 estimates were further corrected by the second-stage GWR models.

3. Results

3.1. Spatiotemporal Coverage and Distribution of VIIRS IP AOD

Figure 2 illustrates the seasonal-spatial distribution of the VIIRS IP AOD coverage and average.
Spatially, low spatiotemporal coverage and high VIIRS IP AOD values occurred in urban centers,
whereas high spatiotemporal coverage and low VIIRS IP AOD values mainly appeared on the urban
periphery. Temporally, autumn had much higher spatiotemporal coverage of VIIRS IP AOD than the
other seasons, but its average AOD values were lower than those in spring and summer. Overall, the
VIIRS IP AOD had an average spatiotemporal coverage and value of 16.12% and 0.4039, respectively,
across Beijing in 2014. The missing data problem of the VIIRS IP AOD is somewhat severe, indicating
the necessity of developing a nested spatiotemporal statistical model.

3.2. Descriptive Analysis of Model Dataset

Figure 3 illustrates the histogram and several common statistics of all variables in the model
dataset. Except for PRCP, the remaining variables were approximately normally distributed (AOD,
PBLH, RH_PBL, T2M, PS, U10M, V10M, and NDVI) or log-normally distributed (PM2.5 and NO2_Lag).
Overall, the mean values of PM2.5 and AOD were 58.15 µg/m3 and 0.65, respectively, indicating that
the loadings of both surface and total aerosol particles were high in Beijing.
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3.3. Results of Model Fitting and Validation

Table 1 shows the coefficients of the independent variables of the first-stage TFER models with
daily, weekly, and monthly intercepts. PS and NDVI did not appear in any TFER models and were
therefore omitted from Table 1. Except for PRCP, the coefficients of the remaining variables had
reasonable values. Although PRCP had an extremely large positive coefficient, the maximum value
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of the PRCP observations was only 0.00019, meaning that the products of the coefficient and the
observations would not be very large and that the final PM2.5 estimates would not be significantly
biased. Figure 4 shows the variations of daily, weekly, and monthly intercepts. Clearly, the intercepts
in winter and spring were always larger than those in summer and autumn. Because the remaining
coefficients in each TFER model were fixed, such variations, to some extent, indicated that PM2.5

concentrations during winter and spring were probably larger than those during summer and autumn
under the same condition. The proportion of statistically significant intercepts approached 77.67%,
83.67%, and 100% for the TFER models with daily, weekly, and monthly intercepts, respectively,
showing the goodness of model fitting.

Table 1. Coefficients of independent variables of the first-stage nested TEFR model.

TFER
Models

Coefficients

AOD PBLH RH_PBL T2M PRCP U10M V10M NO2_Lag

Daily 5.01 −0.01 54.77 6.27 - −1.70 - -
Weekly 6.87 −0.02 73.89 7.62 - −1.20 0.89 0.26

Monthly 22.57 −0.03 44.68 3.01 38,654.95 - - -
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Figure 5 illustrates the model fitting and sample-based ten-fold CV results for the first-stage
nested TFER model. Considering the behavior of the R2 and MPE (RMSE) of the model during ten-fold
CV, from the TFER model with monthly intercepts to the TFER model with weekly intercepts and from
this version of the model to the TFER model with daily intercepts, R2 increased by 46.67% and 22.73%,
respectively, and MPE (RMSE) decreased by 27.08% (22.11%) and 29.40% (27.47%), respectively. This
indicates that the PM2.5-AOD relationship presents strong temporal heterogeneities. Varying intercepts
with a shorter time interval could capture more temporal heterogeneities and hence might be more
appreciated. Model overfitting problems existed to different extents in the first-stage nested TFER
model. For days with a model dataset in which the TFER model with daily intercepts was used, the
R2 decreased by 4.71% from model fitting to ten-fold CV. The corresponding values were 8.33% and
4.26%, respectively, in the TFER model with weekly and monthly intercepts. These relatively small
values indicate that the model overfitting problem was not very severe. The proportion of daily PM2.5

estimates explained ranged from 0.45 to 0.81 according to the ten-fold CV results. Although 0.45 was
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not a high value, it yielded more information than if no PM2.5 estimates were retrieved. In addition,
the correlation coefficient between predicted and observed PM2.5 could approach 0.67, which is not a
bad result.
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By removing the auxiliary variables, an AOD-only nested TFER model was fitted. Figure 6
illustrates its model fitting and sample-based ten-fold CV validation results. It is apparent that all
the R2 declined, whereas all the MPE and RMSE increased. Further calculations revealed that when
moving from the AOD-only model to the full model, R2 increased by 3.85%, 26.92%, and 40.63%
for the TFER models with daily, weekly, and monthly intercepts, respectively, during sample-based
ten-fold CV. These values indicated the relative role of varying intercepts and auxiliary variables
on adjusting PM2.5-AOD relationships. When varying intercepts with shorter time intervals were
incorporated, the role of auxiliary variables became less important. In this study, the auxiliary variables
especially the meteorological data, did not have high spatial resolutions, but they were nevertheless
used by interpolating them to the same spatial resolution as the VIIRS IP AOD. This may have
introduced some uncertainties, but fortunately the degree to which uncertainties occurred was not
large because the values of the sample-based ten-fold CV R2 of the AOD-only models shown in
Figure 6 were relatively high. It is feasible to use only AOD itself to derive PM2.5 concentrations using
a spatiotemporal statistical model (e.g., [16]) when high-coverage satellite-retrieved AOD are available,
but high-resolution auxiliary variables are very difficult to access.
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By removing the VIIRS IP AOD variable, a non-AOD nested TFER model was fitted. Table 2
lists the results of F tests between the full and non-AOD models. It shows that the incorporation of
the VIIRS IP AOD retrievals significantly improved the performance of the TFER models with daily,
weekly, and monthly intercepts at α = 0.05. In addition, the extent to which the improvement occurred
follows an increasing order of the TFER models with daily, weekly, monthly intercepts according to
the size of the F values.

Table 2. F tests between the full and non-AOD models for the first-stage nested TFER model.

TFER
Models

Full or Non-AOD
Models Res.Df RSS Df Sum of Sq F Pr (>F)

Daily full model 738 158,552 - - - -
non-AOD model 739 159,976 −1 −1423.6 6.6261 0.01024

Weekly full model 775 258,949 - - - -
non-AOD model 776 262,652 −1 −3702.7 11.082 0.000913

Monthly full model 806 543,992 - - - -
non-AOD model 807 595,707 −1 − 76.623 2.20 × 10−16

Table 3 lists the estimated best bandwidth, minimum AICc, range of the intercepts, AOD
coefficients, and local R2 for each GWR model. Except for the bandwidth in spring and winter,
which was almost double those in the other seasons and the entire year, all the other parameters had
reasonable values and ranges. Spatially varying coefficients of the intercept and AOD indicated that
the second-stage GWR captured the spatial heterogeneities of the PM2.5-AOD relationships. Spatially
varying local R2 showed the extent to which this improvement was achieved, up to a maximum of
0.672. Therefore, the performance of the first-stage nested TFER model was improved.
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Table 3. Estimated parameters of the GWR models.

Period N Bandwidth
(km) AICc Intercept AOD Local R2

Spring 34 56.88 259.01 46.50~52.00 −53.70~−41.44 0.24~0.46
Summer 34 23.79 243.57 −35.15~44.61 −33.36~88.05 0~0.67
Autumn 34 28.00 268.64 16.67~65.66 −18.02~54.99 0~0.52
Winter 16 54.90 160.818 61.31~114.78 −240.05~−76.87 0.09~0.39
Annual 34 26.12 257.66 −60.92~98.05 −81.91~170.61 0.01~0.51

3.4. Results of PM2.5 Prediction

Figure 7 illustrates the seasonal-spatial distribution of satellite-based and ground measured
PM2.5 concentrations. The PM2.5 predictions from the overall model were higher than those from
the first-stage nested TFER model. These higher values were much closer to the real level shown in
Figure 7C, indicating the necessity and effectiveness of adding the second-stage GWR models. In
terms of the spatiotemporal pattern of PM2.5 pollution in Beijing, during summer, autumn, and the
entire year, from the northwestern areas to the southeastern areas, a gradient of slight to severe PM2.5

pollution was observed. These gradual changes were consistent with previous studies [16,47] but this
study provides more spatial detail thanks to the high spatial resolution of the VIIRS IP AOD retrievals.
However, similar gradual changes did not occur during spring and winter, but noisy distributions were
found instead. This phenomenon may be attributed to very low spatiotemporal coverage (Figure 2)
plus the insufficiently high accuracy [22–24] of the VIIRS IP AOD retrievals, which constitutes one of
the deficiencies of these retrievals and deserves attention and improvement in the future. In addition,
the fact that large quantities of coarse particles intrude into Beijing during spring [48] might also
badly influence the accuracy of PM2.5 estimates during this season. Seasonally, it was only possible to
conclude roughly that PM2.5 pollution during summer was relatively slight.
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4. Discussion

To demonstrate the potential benefits and deficiencies of the nested spatiotemporal statistical
model (hereafter referred to as the nested model), a non-nested spatiotemporal statistical model
(hereafter referred to as the non-nested model) was developed and used to predict PM2.5 concentrations.
The difference between the nested and non-nested models was that the latter used the TFER model with
daily intercepts only at the first stage. Consequently, daily intercepts and hence PM2.5 concentrations
could not be obtained for days without a model dataset. Figure 8 shows the PM2.5 prediction maps from
the non-nested model; they resemble those from the nested model, as shown in Figure 7. Nevertheless,
one obvious difference was observed in winter (N.B. Also the remaining seasons and the entire
year, shown in Figure 9B), during which the nested model produced more PM2.5 estimates than the
non-nested model. The absence of a model dataset on a certain day only meant that data integration
at the PM2.5 ground monitors failed, but the VIIRS IP AOD and other auxiliary variables may still
have existed at other locations on that day. The nested model used weekly and monthly intercepts to
predict PM2.5 concentrations on those days, thus maximizing the use of existing datasets and leading
to a better coverage of the final PM2.5 estimates.
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Figure 9. Comparisons between the estimated seasonal and annual PM2.5 concentrations from the
nested and non-nested models. (A) regression analysis with the seasonal and annual PM2.5 observations
from the 35 monitoring sites; (B) number of available daily PM2.5 estimates to calculate the seasonal
and annual PM2.5 estimates). (a–e) correspond to spring, summer, autumn, winter, and annual in
subfigures (A,B).

The predicted PM2.5 concentrations from the nested and non-nested models were further
compared with the observed PM2.5 concentrations from the 35 monitoring sites. Figure 9B shows that
the numbers of available daily PM2.5 estimates to calculate seasonal and annual PM2.5 estimates all
increased, with an increase of approximately 50% in summer, autumn, and the entire year. Figure 9A
shows that the accuracy of seasonal and annual PM2.5 estimates increased or declined during different
seasons and the entire year. Generally, the accuracy of seasonal and annual PM2.5 estimates based
on daily PM2.5 estimates is subject to two factors: accuracy and the number of daily PM2.5 estimates.
More available daily PM2.5 estimates with higher accuracy produce more accurate seasonal and annual
PM2.5 estimates. The situation was, however, slightly more complex in this study because the nested
model provided more available daily PM2.5 estimates with lower accuracies. Therefore, the eventual
accuracy of the seasonal and annual PM2.5 estimates was dependent on the tradeoff between these two
opposing factors. The nested model increased the number of daily PM2.5 estimates to a very limited
degree in winter and spring given that the original spatiotemporal coverages of the VIIRS IP AOD
retrievals during these two seasons were rather low, the advantages of which did not outweigh the
disadvantages of the accumulation of lower accuracies, thereby leading to a decline, or more strictly
speaking, a fluctuation, in the accuracies of winter and spring PM2.5 estimates. The nested model
significantly increased the number of daily PM2.5 estimates in summer, autumn, and the entire year, the
advantages of which outweighed the disadvantages of the accumulation of lower accuracies, thereby
resulting in improved accuracies of summer, autumn, and annual PM2.5 estimates.
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The present work, to some extent, resembles the work by Ma et al. [15], who developed a nested
linear mixed effects (LME) regression model to improve the accuracy of PM2.5 estimates on days
without a model dataset. As stated in previous work by the authors [17], the LME model is more
widely used for analyzing hierarchical data and accommodating complicated hierarchical correlations
of observations, whereas the TFER model, which is derived from panel data regression models, is
relatively easier to calibrate and to use for prediction. Because the sample size, variables, and study area
differed between the work by Ma et al. [15] and the present work differed, it was difficult to compare
directly the sample-based ten-fold CV R2 values of these two studies. Nevertheless, it could be roughly
concluded that a comparable model performance has been obtained without specifying varying slopes,
which may increase the model’s complexity, indicating the feasibility of the combination of VIIRS IP
AOD retrievals and the nested TFER model in Beijing city. In addition, the modeling steps can be
easily repeated in other cities, meaning that the present work contributes not only a specific model
for Beijing city, but also a modeling framework for similar cities, as long as high spatial resolution
satellite-retrieved AOD and correlated auxiliary variables are accessible. Attention should be paid to
selecting appropriate variables because factors influencing PM2.5-AOD relationships vary from one
geographical area to another.

One limitation associated with this study is that no measures were taken to supplement the
missing data in the VIIRS IP AOD retrievals. A nested model was developed to make the maximum
use of these retrievals, but it was still difficult to produce daily PM2.5 estimates with high accuracy for
each day. Therefore, the choice was made to calibrate and validate the five GWR models at seasonal
and annual scales in this study. One possible explanation of the low spatiotemporal coverage of the
VIIRS IP AOD retrievals was that the current version of the VIIRS over-land algorithm, mostly based
on the MODIS atmospheric correction algorithm [49], does not retrieve aerosol properties over bright
surfaces, in cloud-affected pixels, over inland water such as the Great Lakes, or at night [36]. As
such, a relatively low overall 16.12% spatiotemporal coverage occurred due to the limited number of
clear sky days in Beijing in 2014. The value became even smaller during winter when leaves falling
leading to more bright pixels. Developing specific algorithms for bright areas to retrieve AOD from
the VIIRS will probably benefit mitigating this missing data problem. The LAADS Distributed Active
Archive Center (DAAC), for instance, has recently released the Suomi-NPP VIIRS Deep Blue Aerosol
products (https://ladsweb.modaps.eosdis.nasa.gov/alerts-and-issues/?id=25803). Integrating AOD
retrievals from other sources such as 1-km MAIAC AOD could also be very helpful, thereby generating
seasonal and annual PM2.5 estimates as well as more days of PM2.5 estimates with higher accuracy and
coverage. Another limitation of this study is that a large number of independent variables proposed in
previous studies were not tested here (e.g., the accuracy of the PM2.5 estimates during spring could be
potentially improved if variables representing coarse vs. fine fraction of aerosols were incorporated).
The authors firmly believe that the model structure for the first-stage nested TFER model will prove to
be more suitable and robust with more variables tested in the future.

5. Conclusions

According to the authors’ knowledge, this study is one of the earliest applications of the most
recent high-resolution VIIRS IP AOD to predict PM2.5 concentrations across Beijing at a 750-m spatial
resolution. The results were, on the whole, satisfactory despite some limitations. It could be concluded
that the combination of the VIIRS IP AOD and the nested spatiotemporal statistical model could
estimate urban PM2.5 concentrations. The daily PM2.5 estimates explained ranged from 0.45 to 0.81.
More daily PM2.5 estimates were derived, and the accuracies of the summer, autumn, and annual
PM2.5 estimates were improved based on the nested spatiotemporal statistical model. This study can
surely benefit fine-scale PM2.5-related studies, such as urban-scale PM2.5 exposure assessment.
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