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• The capacity of MODIS and VIIRS AOD
were compared in terms of estimating
PM2.5.

• The MODIS model explained 71% of the
total PM2.5 variations.

• The VIIRS model with high-quality AOD
explained 76% of the total PM2.5 varia-
tions.

• The VIIRS models are capable of captur-
ing high PM2.5 concentrations.

• The practice of using medium-quality
VIIRS AOD is meaningful.
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Satellite-derived aerosol optical depth (AOD) has been proven effective for estimating ground-level particles
with an aerodynamic diameter b2.5 μm (PM2.5) concentrations. Using a time fixed effects regression model,
we compared the capacity of two AOD sources, Moderate Resolution Imaging Spectroradiometer (MODIS) and
Visible Infrared Imaging Radiometer Suite (VIIRS), to estimate ground-level PM2.5 concentrations over a heavily
polluted region in China. Regarding high-quality AODdata, the results show that the VIIRSmodel performs better
than the MODIS model with respect to all model accuracy evaluation indexes (e.g., the coefficient of determina-
tion, R2, of the VIIRS and MODISmodels are 0.76 and 0.71 duringmodel fitting and 0.72 and 0.66 in cross valida-
tion, respectively), the potential for capturing high PM2.5 concentrations, and the precision of annual and
seasonal PM2.5 estimates. However, the spatiotemporal coverage of the high-quality VIIRS AOD is inferior to
that of theMODIS AOD.We attempted to includemedium-quality VIIRS AOD data to eliminate this, while explor-
ing its influence on the performance of the VIIRS model. The results show that it improves the spatiotemporal
coverage of the VIIRS AODdramatically especially inwinter, although a decline inmodel accuracy occurred. Com-
pared to theMODISmodel, theVIIRSmodelwith bothhigh-quality andmedium-quality AODdata performs com-
parably or even better with respect to some model accuracy evaluation indexes (e.g., the model overfitting
degree of the VIIRS and MODIS models are 7.46% and 5.82%, respectively), the potential for capturing high
PM2.5 concentrations, and the precision of annual and seasonal PM2.5 estimates. Nevertheless, the VIIRS models
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did not perform as well as theMODIS model in summer. This study reveals the advantages and disadvantages of
the MODIS and VIIRS AOD in simulating ground-level PM2.5 concentrations, promoting research on satellite-
based PM2.5 estimates.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Numerous epidemiological studies have indicated that long-term
exposure to particles with an aerodynamic diameter b2.5 μm (PM2.5)
is associated with various adverse health outcomes (Dominici et al.,
2006; Pope et al., 2002; Pope and Dockery, 2006). With rapid urbaniza-
tion and industrialization, China has become one of the worst regions
with respect to fine particle pollution worldwide (Boys et al., 2014;
van Donkelaar et al., 2015; van Donkelaar et al., 2016; van Donkelaar
et al., 2010). Consequently, national PM2.5-related deaths from stroke,
ischemic heart disease, lung cancer, etc. have increased dramatically in
the past decades (Liu et al., 2016; Wu et al., 2017).

Both epidemiological studies and environmental management ef-
forts benefit from the estimation of spatially fine PM2.5 concentrations
with high accuracy, resolution, and spatiotemporal coverage. In contrast
to limited, costly groundmonitoring sites with an uneven spatial cover-
age in China, satellite remote sensing technology has the potential to
achieve such estimations due to its high resolution and spatiotemporal
coverage. It is a new and effective tool that has been developed rapidly
in recent years (Hoff and Christopher, 2009).

Aerosol optical depth (AOD) is the most commonly used remote
sensing parameter in satellite-based PM2.5 estimation models, which
is defined as the integral of the light extinction caused by aerosol optical
absorption and scattering in an atmospheric column and has been prov-
en to correlatewith ground-level PM2.5 concentrations (Engel-Cox et al.,
2004; Hu et al., 2014; Wang and Christopher, 2003). A series of AOD
products derived from satellite sensors have been adopted to estimate
ground-level PM2.5 concentrations. These include AOD products from
the Moderate Resolution Imaging Spectroradiometer (MODIS) (Hu et
al., 2013; Lee et al., 2011; Ma et al., 2016a; Ma et al., 2016b; Song et
al., 2014), Multiangle Imaging SpectroRadiometer (MISR) (Liu et al.,
2007; Liu et al., 2005; You et al., 2015), Visible Infrared ImagingRadiom-
eter Suite (VIIRS) (Schliep et al., 2015; Wu et al., 2016), Geostationary
Operational Environmental Satellite (GOES) (Liu et al., 2009), and Geo-
stationary Ocean Color Imager (GOCI) (Xu et al., 2015).

Among the above-mentioned AOD products, MODIS AOD has been
applied mostly due to its long time series of archived data (Chu et al.,
2016). However, MODIS is already working beyond its expected opera-
tion period and is expected to cease transmitting data in the future. The
VIIRS was designed and launched to address this. As a next-generation
polar-orbiting operational environmental sensor with the capability
for global aerosol observations, VIIRS aerosol retrieval is expected con-
tinue the decade-long successful aerosol retrieval ofMODIS for scientific
research and applications (Liu et al., 2014; Meng et al., 2015). Although
some studies have shown that AOD products from theMODIS and VIIRS
are both suitable for estimating ground-level PM2.5 concentrations, few
studies have compared their capacities. Such comparative studies are
important for providing meaningful indications on the respective
strengths of MODIS and VIIRS AOD, as well as offering helpful sugges-
tions for improving the new VIIRS.

Therefore, the objective of this study is to compare the capacity of
the MODIS and VIIRS AOD in estimating ground-level PM2.5 concentra-
tions over a heavily polluted region in China. To this end,we collected 3-
kmMODIS AOD and 6-km VIIRS AOD from theMODIS Collection 6 (C6)
and the VIIRS Environmental Data Record (EDR), respectively. Subse-
quently, we established several separate satellite-based statistical
PM2.5 estimation models, one MODIS model and two VIIRS models,
using MODIS and VIIRS AOD, respectively, as the main predicator, as
well as several auxiliary variables. Next, we compared the capacities of
the MODIS and VIIRS models from a multidimensional perspective. Fi-
nally, we determined whether the MODIS and VIIRS AOD differ signifi-
cantly with respect to estimating ground-level PM2.5 concentrations
over a heavily polluted region in China and offered constructive sugges-
tions on future applications of satellite-derived AOD.

2. Data and methods

2.1. Study area

We used the Beijing-Tianjin-Hebei region as the study area. It is lo-
cated in Northern China, and includes the entire Beijing municipality,
Tianjin municipality, and Hebei province. Due to the long history of in-
dustrial development and urban expansion, this region is heavily pollut-
ed and faces a greater health burden than other regions in China (Liu et
al., 2016). From April 2014 to April 2015, half of the ten cities most af-
fected by haze in Chinawere located in this region,with amaximuman-
nual PM2.5 concentration of 118.08 μg/m3 in Baoding, Hebei (Zhang and
Cao, 2015). As the capital area in China, the fine particulate pollution in
this region has attracted increasing attention from scholars, the govern-
ment, and inhabitants. A total of 104 PM2.5 monitors and 25 weather
stations are distributed throughout this region (Fig. 1). The southeast-
ern area is characterized by a lower terrain and concentration of main
human activities.

2.2. Data collection

Ground-level PM2.5 data were downloaded from the official website
of the China Environmental Monitoring Center (CEMC) and BeijingMu-
nicipal Environmental Monitoring Center (BJMEMC). The data were
measured using the tapered element oscillating microbalance method
(TEOM) or the beta-attenuation method, which are automatic online
monitoring methods stipulated by the new ambient air quality stan-
dards, and were processed using data quality calibration and control
(HJ618-2011, 2011). The temporal resolution of the ground-level
PM2.5 measurements was 1 h; we used the daily average as the depen-
dent variable.

The MODIS is an important sensor installed on the Terra and Aqua
satellites (Remer et al., 2005) of the Earth Observing System (EOS) op-
erated by the National Aeronautics and Space Administration (NASA).
The MODIS AOD includes two types of AOD algorithms, the dark target
(DT) and deep blue (DB) AOD algorithms. In the newest C6 collection,
the MODIS team firstly released 3-km DT AOD products (Remer et al.,
2013). We obtained the 3-km MODIS AOD data from the Terra and
Aqua satellites from the Level-1 andAtmospheric Archive&Distribution
System (LAADS) operated by NASA (code: MOD04_3K, MYD04_3K).
The VIIRS is a key sensor onboard the Suomi National Polar-orbiting
Partnership (Suomi-NPP) Satellite. It provides two types of AOD prod-
ucts, the intermediate product (IP) AOD and the EDR AOD, with spatial
resolutions of 750 m and 6 km (Jackson et al., 2013), respectively. Both
can be applied and explored when estimating ground-level PM2.5 con-
centrations. In this study, we mainly aimed to compare the capacities
of the 3-km MODIS AOD and 6-km VIIRS AOD to estimate ground-
level PM2.5 concentrations. Therefore, we collected the EDR AOD
(code: VIIRS_EDR) from the Comprehensive Large Array-data Steward-
ship System (CLASS) operated by theNational Oceanic andAtmospheric
Administration (NOAA).

The AOD is the total integral of the light extinction caused by aerosol
optical absorption and scattering in an atmospheric column. Its



Fig. 1. Study area.
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correlationwith ground-level PM2.5 concentration is affected by the ver-
tical profile of the AOD. Studies have shown that most particles are uni-
formly distributed in the lower troposphere with intensive mixing
(Clarke et al., 1996; Sheridan and Ogren, 1999). Thus, the planet bound-
ary layer height (PBLH) can be used as a proxy in themodel accounting
for the vertical profile of the AOD and is negatively correlatedwith PM2.5

(Liu et al., 2005). Aerosols increase due to moisture absorption, which
changes its distribution and optical properties (Malm et al., 2000),
influencing the PM2.5–AOD relationship. In this study, the PBLH data
and the average relative humidity data of the lower tropospheric nine
layers at 1000 hPa, 975 hPa, 950 hPa, 925 hPa, 900 hPa, 875 hPa,
850 hPa, 825 hPa, and 800 hPa altitudes (RH_PBL) from the MERRA
model reanalysis were incorporated into the model as assistant vari-
ables. Both PBLH (code: tavg1_2d_flx_Nx) and RH_PBL (code:
inst3_3d_asm_Cp) data were downloaded from the Goddard Earth Sci-
ences Data and Information Services Center (GESDISC) (Rienecker et al.,
2011) with spatial resolutions of 0.5° × 0.5° and 1.25° × 1.25°, respec-
tively. We used the average values during the satellite overpass time
to adjust the model. Limited by the temporal resolution, the PBLH and
RH_PBL data were averaged from 12:30 to 14:30 and 12:00 to 15:00
local time, respectively.

Surface meteorological conditions either increase or decrease the
ground-level PM2.5 concentrations and consequently influence the
PM2.5–AOD relationship. In this study, we obtained the temperature
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(TEMP), surface relative humidity (SRH), precipitation (PRCP), wind di-
rection duringmaximumwind speed (WD), andwind speed (WS) data
from the China Meteorological Data Sharing System. Data with a 1-day
temporal resolution from 25 weather stations in Beijing-Tianjin-Hebei
were included (Fig. 1). We used the daily averages for TEMP and SRH,
and daily summation for PRCP. Based on the WD and WS, we derived
four wind vectors using the strategy described by (Wu et al., 2016):
east wind speed (EWS), south wind speed (SWS), west wind speed
(WWS), and north wind speed (NWS). The surface meteorological
data were all incorporated into the model to adjust the PM2.5–AOD
relationship.

In addition, plant foliage decreases ground-level PM2.5 concentra-
tions by absorbing particles on the plant leaf surfaces or in leaf wax
(Nowak et al., 2006; Pugh et al., 2012). Thus, we added the normalized
difference vegetation index (NDVI) to the model, which is a proxy for
surface vegetation coverage and its change, to further adjust the
PM2.5–AOD relationship. Moreover, low vegetation areas generally rep-
resent highly developed areas; therefore, a negative correlation be-
tween NDVI and PM2.5 can be derived. NDVI data with temporal and
spatial resolutions of 16 days and 250 m, respectively, were
downloaded from LAADS (code: MOD13Q1).

Finally, several other atmospheric pollutants, such as NO2, can be
used as a proxy for anthropogenic emissions (Zhang and Cao, 2015)
and influence the PM2.5–AOD relationship. Following the method used
by (Wu et al., 2016), we added the previous day's NO2 concentrations
to the model to obtain good model performance. NO2 data from the
ozone monitoring instrument (OMI) sensor were downloaded from
the Tropospheric Emission Monitoring Internet Service (TEMIS)
(Boersma et al., 2011). The spatial resolution of the OMI NO2 data was
0.25° × 0.25°.

All of the above-mentioned data were collected from January 1 to
December 31, 2014. The URLs (Uniform Resource Locators) for these
data are listed in the supplementary material (Table S1).
2.3. Quality assurance of AOD

In addition to the AOD products, theMODIS and VIIRS teams also re-
lease the corresponding quality assurance (QA) data. The interpretation
of MODIS and VIIRS QA data is shown in Table 1. In this study, we used
QA=2, 3MODISAODandQA=2, 3 VIIRS AODdata to avoid the poten-
tial negative effects of AOD deviations.

We combined the two types of satellite MODIS AOD data before
building the MODIS model, because the MODIS sensor is installed on
both the Terra and Aqua satellites. We used the MODIS AOD on the
Terra and Aqua satellites of each day and ordinary least square (OLS) re-
gression method to fit the equation for the Aqua and TerraMODIS AOD.
To ensure the accuracy, only days with N30 Terra and AquaMODIS AOD
data pairs with correlation coefficients no b0.5 were processed. We ob-
tained thefitted AquaMODIS AOD by applying the equation to the Terra
MODIS AOD pixels. The fitted Aqua MODIS AOD was used to comple-
ment the missing Aqua MODIS AOD to form the combined Aqua
MODIS AOD. We used the combined Aqua MODIS AOD to build the
MODIS model (Model I) because the satellite overpass time of Aqua
(1:30pm) coincideswith that of the Suomi-NPP satellite. TheOLS fusion
method has been proven effective in previous studies (Ma et al., 2014;
Table 1
Quality assurance flags of MODIS and VIIRS AOD.

MODIS VIIRS

Flag Quality Flag Quality

0 Bad or no confidence 0 Not produced
1 Marginal 1 Low
2 Good 2 Medium
3 Very good 3 High
Puttaswamy et al., 2014) and eliminates the systematic differences of
various satellite-derived AOD values.

Differing from theMODIS, the VIIRS provides amedium-quality AOD
data product. Since we have no prior knowledge of its predictive power
for ground-level PM2.5 concentrations, we used QA = 3 and QA = 2, 3
AODdata to build the twoVIIRSmodels (Model II, Model III), respective-
ly. A comparison between them could reveal the tradeoff between their
spatiotemporal coverage and predictive power for ground-level PM2.5

concentrations. Comparing themwithModel I could reveal the capacity
differences between MODIS and VIIRS AOD in estimating ground-level
PM2.5 concentrations, which is the objective of this study.

2.4. Data integration

The data employed in this study comprise different data types, coor-
dinate systems, and spatiotemporal resolutions. Before establishing the
models, we projected all data into the Albers equal-area conic coordi-
nate system. Then,wematched all independent variables to PM2.5mon-
itors using the nearest neighbor method. With respect to the mapping
data, we first created 3-km grids and 6-km grids in the Beijing–Tian-
jin–Hebei region according to the spatial resolutions of the MODIS and
VIIRS AOD. Then, we used the nearest neighbor method again to
match all independent variables to the grids.

2.5. Model fitting and validation

Modeling and mapping datasets were obtained after the data inte-
gration; the datasets were spatial unbalanced panel data, meaning
that each data record is related to a specific day and specific site, but
the number of data records for a specific day or a specific site varies
greatly. We omitted the data for days with less than two records to en-
able cross-validation. There are various statistical methods for spatial
unbalanced panel data. In this study, we employed the timefixed effects
regression model because of the computational savings, easy operation,
and comparable model performance in contrast to linear mixed effects
models (Wu et al., 2016). The model structure is as follows:

PM2:5;st ¼ λt þ βAODAODst þ βPBLHPBLHst þ βRH PBLRH PBLst
þ βTEMPTEMPst þ βSRHSRHst þ βPRCPPRCPst þ βEWSEWSst
þ βSWSSWSst þ βWWSWWSst þ βNWSNWSst þ βNDVINDVIst
þ βNO2 LagNO2 Lagst þ εst ð1Þ

where PM2.5 ,st, AODst, PBLHst, RH_PBLst, TEMPst, SRHst, PRCPst, EWSst,
SWSst, WWSst, NWSst, and NDVIst are the ground-level PM2.5 concentra-
tions, AOD, PBLH, RH_PBL, TEMP, SRH, PRCP, EWS, WWS, SWS, and
NWS at site s during day t; NO2_Lagst is the NO2 concentration at site s
during day t − 1; and βAOD, βPBLH, βRH_PBLH, βTEMP, βSRH, βPRCP, βEWS,
βSWS, βWWS, βNWS, βNDVI, and βNO2_Lag are the coefficients of AOD, PBLH,
RH_PBLH, TEMP, SRH, PRCP, EWS, SWS, WWS, NWS, NDVI, and
NO2_Lag. λt is the intercept during day t, reflecting the daily variation
of the PM2.5–AOD relationship.

By applying the model dataset to Eq. (1), we obtained the coeffi-
cients and intercepts of the model, from which we estimated the
PM2.5 concentrations for both monitors and non-monitors. We
regressed the PM2.5 estimations to observations at monitors and calcu-
lated several statistical parameters, including the coefficient of determi-
nation (R2), mean predication error (MPE), and root mean square error
(RMSE), to assess the model's fitting capability. To assess the generaliz-
ability of the model, we conducted a ten-fold cross-validation. We ran-
domly split the dataset into ten subsets and completed ten rounds of
model fitting and prediction. In each round, we used nine subsets to
fit themodel; the tenth subset was used for the prediction.We obtained
another data pair between the PM2.5 estimations and observations after
the ten rounds were completed. Similarly, we fitted a regression equa-
tion and used the same statistics to assess the generalizability of the
model.
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2.6. Ground-level PM2.5 mapping and evaluation

We estimated the ground-level PM2.5 concentrations of each day by
combining the fitting model with the mapping dataset. We further ob-
tained the annual and seasonal ground-level PM2.5 concentrations by
averaging the daily estimates of the whole year or four seasons, respec-
tively. For annual and seasonal estimations,we assessed their deviations
from the observations.

3. Results

3.1. Descriptive analysis

Table S2 summarizes the descriptive statistics of the modeling
dataset. In general, most variables of Models I, II, and III have a similar
distribution. Three main differences should be noted. First, the maxi-
mumvalue and standarddeviation of the ground-level PM2.5 concentra-
tions of Models II and III are larger, indicating that the VIIRS matches
larger and wider ground-level PM2.5 concentrations. Second, the AOD
ranges of MODIS (0–4) and VIIRS (0–2) differ, indicating potential dif-
ferences when estimating ground-level PM2.5 concentrations. Third,
Model I is larger thanModel II, benefiting from the simultaneous instal-
lation of MODIS on Terra and Aqua satellites. However, Model I is small-
er than Model III, indicating that including medium-quality VIIRS AOD
can obtain more regression data pairs, exceeding the advantage of the
simultaneous installation of MODIS on the Terra and Aqua satellites.

3.2. Spatiotemporal coverage of AOD

Fig. 2 illustrates the spatiotemporal coverage of theMODIS andVIIRS
AOD. Each raster value represents the proportion of days for which AOD
was derived. Table 2 shows the corresponding averages over the whole
region. Regarding high-quality AOD retrievals, theMODIS performs bet-
ter than the VIIRS during the whole year, spring, summer, and autumn,
which is mainly due to the simultaneous installation of MODIS on two
Fig. 2. Spatiotemporal coverage of AOD (A: MO
satellites. However, the VIIRS performs much better than the MODIS
in winter, even though it is only associated with one satellite. After in-
cluding the medium-quality AOD, the spatiotemporal coverage of the
VIIRS AOD outperforms the MODIS AOD during the whole year and
most seasons, especially winter. Because fine particulate pollution in
China is worse in winter (Ma et al., 2014; Zhang and Cao, 2015), the
VIIRS has the potential to capture high PM2.5 concentrations.

3.3. Model fitting

Table 3 summarizes the coefficients and intercepts of theMODIS and
VIIRS models. Most variables have the same signs and are significant at
the α = 0.05 level. PBLH and NDVI are not significant in all models.
However, the signs of these two variables in the VIIRS models are in ac-
cordwith prior knowledge (Liu et al., 2005;Wuet al., 2016), while those
in the MODIS model are not. Moreover, the p values of these two vari-
ables in the VIIRS models are much smaller than those in the MODIS
model. Regarding the four wind vectors, the MODIS model has three
non-significant variables, while the VIIRSmodels have one or two insig-
nificant variables with smaller p values. Although the NO2_lag variable
is not significant in Model II, its p value is only 0.079. In general, the
VIIRS models perform better than the MODIS model based on the vari-
able significance test. However, including the medium-quality VIIRS
AOD results in a slight decrease in the performance of the VIIRS model.

3.4. Model validation

Fig. 3 illustrates the model fitting and generalizability of Models I, II,
and III. Fig. 4 shows their benchmark models, namely, the non-AOD
model with all other variables. The following three results indicate
that Model II is the best among the threemodels. First, themodel fitting
and cross-validation of Model II have the highest R2, lowest MPE, and
lowest RMSE values. Second, the slope of Model II is nearest to one
and the intercept ofModel II is nearest to zero. Third,Model II can derive
high PM2.5 concentrations (N300 μg/m3). A comparison ofModels II and
DIS, B: VIIRS QA= 3, C: VIIRS QA= 2, 3).



Table 2
Coverage averages over the whole region.

AOD parameter Spring coverage (%) Summer coverage (%) Autumn coverage (%) Winter coverage (%) Annual coverage (%)

MODIS 29.16 33.06 32.89 4.78 25.06
VIIRS (QA = 3) 15.54 22.30 21.61 8.51 17.02
VIIRS (QA = 2, 3) 30.23 38.06 31.77 24.88 31.27
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III shows that including medium-quality VIIRS AOD decreases the per-
formance of the VIIRS model. The R2 duringmodel fitting and cross val-
idation decreases by 9.71% and 10.03%, respectively. Meanwhile, the
RMSE during model fitting and cross validation increases by 16.57%
and 14.86%, respectively. Nevertheless, the annual coverage average
over the whole region dramatically increases by 45.57% according to
Table 2. A comparison of Models I and Model III shows that Model I
has a higher R2 (3.5%, 1.79% higher during model fitting and cross vali-
dation), lower MPE, and lower RMSE (15.99%, 13.91% lower during
model fitting and cross validation). However, the slopes and intercepts
of Model III are nearer to one and zero, respectively. The annual cover-
age average over the whole region of the QA= 2, 3 VIIRS AOD is higher
than that of the MODIS AOD by 19.86% according to Table 2. Moreover,
Model III inherits the capability of Model II to derive PM2.5 concentra-
tions higher than 300 μg/m3, which is not characterized by Model I.
Therefore, including medium-quality VIIRS AOD offers meaningful im-
provements. Although it decreases the model's performance with re-
spect to R2, MPE, and RMSE, it increases the coverage of AOD
dramatically, retains the potential of the original model to derive high
PM2.5 concentrations, and yields a comparable or even better model
performance compared to theMODISmodel. The comparison ofModels
I, II, and III and their benchmark models shows that AOD can simulta-
neously improve model performance and decrease the degree of
model overfitting. Simply using the decreased percentage of R2 from
themodel fitting to cross validation,we calculated themodel overfitting
degrees forModels I, II, and III and their benchmarkmodels (Table 4). As
shown in Table 4, employing AOD decreases the model overfitting de-
gree by 5.16%, 10.05%, and 21.37% for Models I, II, and III, providing ad-
ditional evidence that the VIIRS models outperform the MODIS model.
3.5. Ground-level PM2.5 mapping and evaluation

Fig. 5 illustrates the annual and seasonal PM2.5 estimates from
Models I, II, and III. The PM2.5 estimates from all models present similar
seasonal-spatial patterns. Specifically, the ground-level PM2.5 concen-
trations are high in winter, low in summer, and moderate in spring
and autumn. Spatially, the ground-level PM2.5 concentrations are high
in the southeastern area and low in the northwestern area, in agree-
ment with the distribution of terrain and human activities described
Table 3
Coefficients and intercepts for models I, II, and III.

Variable Model I Model II

β p 5% 95% β

AOD (Unitless) 26.513 0.000 24.014 29.011 23.880
TEMP (0.1 °C) 0.460 0.000 0.407 0.514 0.542
SRH (%) 0.798 0.000 0.687 0.910 1.077
PRCP (0.1 mm) −0.035 0.003 −0.058 −0.012 −0.054
PBLH (m) 0.001 0.602 −0.002 0.003 −0.002
RH_PBLH (Unitless) −23.688 0.000 −34.584 −12.792 −26.147
NDVI (Unitless) 1.812 0.521 −3.727 7.350 −5.756
NO2_Lag (1015 molec/cm2) 0.376 0.000 0.251 0.501 0.127
WWS (0.1 m/s) 0.060 0.308 −0.055 0.175 −0.079
NWS (0.1 m/s) −0.122 0.057 −0.248 0.004 −0.342
EWS (0.1 m/s) −0.044 0.510 −0.177 0.088 −0.291
SWS (0.1 m/s) −0.316 0.000 −0.432 −0.200 −0.242
in Section 2.1. However, there are still some differences in the PM2.5 es-
timates from theMODIS and VIIRS models. For example, the spatiotem-
poral coverage of the PM2.5 estimates occurs in winter, i.e., Model III
outperforms Models I and II dramatically, underlining the importance
of including medium-quality VIIRS AOD. Another difference can be ob-
served in the value size of the PM2.5 estimates. Except in summer, the
VIIRS models provide PM2.5 estimates with slightly larger value sizes
in the southeastern area. To analyze this difference, we plotted the an-
nual and seasonal residuals at the monitors, as shown in Fig. 6, and
their corresponding boxplots, as shown in Fig. 7. Figs. 6 and 7 indicate
that satellite-based annual or seasonal PM2.5 estimates underestimate
the actual levels during the whole year and in most seasons. Thus, the
second difference provides evidence for the finding that the VIIRS
models outperform the MODIS model. Finally, we should note that the
MODIS model outperforms the two VIIRS models in summer with re-
spect to lower residuals, as shown in Figs. 6 and 7.

4. Discussion

In this study, we established three separate remote satellite-based
statistical PM2.5 estimation models for Beijing–Tianjin–Hebei using the
MODIS and VIIRS AOD, respectively, and various assistant variables.
The multidimensional comparison revealed that the VIIRS models
outperformed the MODIS model. The practice of including medium-
quality VIIRS AOD was determined to be viable, and improved the spa-
tiotemporal coverage of the VIIRS AOD dramatically despite decreasing
themodel accuracy to some extent. To our knowledge, this is one of the
first empirical studies to examine the differences between the remote
sensing retrievals of ground-level PM2.5 concentrations from MODIS
and VIIRS over a heavily polluted region in China.

4.1. Comparison of MODIS and VIIRS models

The VIIRS AOD has a better capability to retrieve ground-level PM2.5

concentrations based on the following evidence. First, Model II per-
formed the best during the model fitting and cross-validation with re-
spect to the significant variable numbers, signs and p values of
variables, and model accuracy (e.g., R2, MPE, and RMSE). Second, the
seasonal estimates of ground-level PM2.5 fromModel III had the highest
Model III

p 5% 95% β p 5% 95%

0.000 20.800 26.959 26.591 0.000 23.756 29.427
0.000 0.484 0.600 0.495 0.000 0.448 0.542
0.000 0.951 1.203 1.218 0.000 1.112 1.324
0.011 −0.096 −0.012 −0.044 0.004 −0.073 −0.014
0.110 −0.005 0.001 −0.001 0.498 −0.003 0.002
0.000 −39.593 −12.701 −27.001 0.000 −38.857 −15.145
0.059 −11.725 0.214 −5.206 0.081 −11.051 0.639
0.079 −0.015 0.269 0.512 0.000 0.395 0.629
0.270 −0.221 0.062 0.070 0.212 −0.040 0.180
0.000 −0.494 −0.191 −0.208 0.000 −0.321 −0.095
0.001 −0.465 −0.117 −0.048 0.492 −0.186 0.090
0.002 −0.395 −0.089 −0.134 0.048 −0.267 −0.001



Fig. 3. Model validation for Models I, II, and III.

825F. Yao et al. / Science of the Total Environment 618 (2018) 819–828
spatiotemporal coverage, especially in winter. Third, both Models II and
III could retrieve high PM2.5 concentrations and have lower model
overfitting degrees, while Model I did not. Finally, except in summer,
the annual and seasonal ground-level PM2.5 concentrations from
Models II and III were closer to the actual levels.We attribute the advan-
tages of the VIIRS AOD to the following points. First and foremost, the
MODIS and VIIRS have different service durations. The MODIS was
installed on Terra and Aqua in December 1999, and May 2002, respec-
tively, with a prospective life of 6 years (Remer et al., 2005). The VIIRS
Fig. 4. Model validation for the benchm
was installed on Suomi-NPP in October 2011, with a prospective life of
7 years (Jackson et al., 2013). The MODIS onboard Terra and Aqua
have undergone different rates of instrumental degradation in the past
decade (Chen et al., 2014; Lyapustin et al., 2014), causing a decline in
the data quality over time. To eliminate instrumental degradation, the
MODIS team has continuously improved the AOD retrieving algorithm.
The MODIS 3-km AOD used in this study was obtained from the latest
MODIS C6 (Remer et al., 2013). However, it is difficult to completely
eliminate instrumental degradation. In a recent study, the VIIRS, GOCI,
ark models of Models I, II, and III.



Table 4
Model overfitting degree for models I, II, and III and their benchmark models.

Model Model overfitting degree %
(full model)

Model overfitting degree %
(benchmark model)

I 7.46 7.86
II 5.49 6.10
III 5.82 7.40
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and MODIS C6 AODwere compared with that from ground AOD obser-
vations over East Asia. The VIIRS EDR and GOCI products provided the
most accurate AOD retrievals, while the VIIRS IP and MODIS C6 3-km
products had a positive bias (Xiao et al., 2016). Second, the VIIRS was
designed as an expansion and improvement of the MODIS and Ad-
vanced Very High Resolution Radiometer (AVHRR), achieving substan-
tial improvements in the quality of the radiation measurement,
spectral measurement range, and spatial resolution (Schueler et al.,
2002). Thus, such data is likely to have a greater potential for monitor-
ing ground-level air quality. Other than the ability of capturing high
PM2.5 concentrations revealed in this study, the VIIRS day/night band
has been proven to have the potential to monitor nighttime surface
PM2.5 (Wang et al., 2016).

While the better performance of the VIIRS AOD in estimating
ground-level PM2.5 concentrations is encouraging, its deficiencies
should not be ignored. The annual and seasonal residual analysis reveals
that the MODIS model performs better in summer with lower devia-
tions. After replotting Fig. 3 using only the data pairs from summer,
we found that MODIS model performed much better than the two
VIIRSmodels with respect to higher R2 values during bothmodel fitting
and cross validation (0.6737, 0.65302, 0.61948 duringmodel fitting and
0.63631, 0.61587, 0.57759 during cross validation for Models I, II, and
III), slopes and intercepts nearer to one and zero (slope: 1.0035,
0.94127, 0.89978 during model fitting and 0.969, 0.9101, 0.86246 dur-
ing cross validation for Models I, II, and III; intercept: −0.21332,
3.0261, 5.304 during model fitting and 1.8949, 4.676, 7.2484 during
cross validation for Models I, II, and III), and a lower model overfitting
Fig. 5. Ground-level PM2.5 estimates from MODIS and V
degree (5.55%, 5.68%, 6.76% for Models I, II, and III). Therefore, caution
should be taken when using the VIIRS AOD to estimate ground-level
PM2.5 concentrations, at least over this study area in summer.

4.2. Assessment of including medium-quality VIIRS AOD

Differing from theMODIS, the VIIRS provides a medium-quality AOD
data product. Since we have no prior knowledge of this kind of data, we
explored its influence on the performance of the VIIRSmodel. The results
show that this practice provides meaningful results, and the benefit of
the AOD spatiotemporal coverage improvement significantly outweighs
themodel accuracy decline.With respect to the variable significance test,
model overfitting degree, and annual and seasonal deviations, the VIIRS
model with medium-quality AOD performed comparably or even better
than theMODISmodel. To alleviate the influence on VIIRSmodel accura-
cy introduced by themedium-quality AOD data, we added a QA dummy
variable into Model III to establish a QA-controlled time fixed effects re-
gressionmodel. However, it only improved the R2 by 0.04% duringmodel
fitting and offered no improvement in cross validation. Further studies
could consider using ground observation AOD data, such as ground
AOD observations from the Aerosol Robotic Network (AERONET), and
handheld sunphotometers to correct the medium-quality VIIRS AOD
data before themodel construction,whichmay improve themodel accu-
racy to a larger degree.

4.3. Limitations and prospects of this study

The time fixed effects regression model employed in this study pro-
vides an individual intercept for each day, reflecting the temporal het-
erogeneity of the PM2.5-AOD relationship. However, daily intercepts
cannot be determined for days without PM2.5-AOD matchups. Conse-
quently, daily PM2.5 estimations on such days cannot be estimated,
even if there are abundant data available at non-monitoring sites,
which is one of the limitations of this study. Similar to the time fixed ef-
fects regressionmodel, the linear mixed effects regressionmodel (LME)
IIRS models (A: Model I, B: Model II, C: Model III).



Fig. 6. The residuals at each monitoring site.
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has the same problem. A nested linear mixed effects regression model
was developed for the Yangtze River Delta in a recent study to abate
this issue, and good performance was reported (Ma et al., 2016b).
Therefore, we could develop a similar nested time fixed effects regres-
sion model in the future to address this limitation. Compared to previ-
ous studies, which also use 3-km MODIS AOD and 6-km VIIRS AOD
data to estimate ground-level PM2.5 concentrations in China, the
model accuracy of our study is as good as those using the LME model
(Ma et al., 2016b) but inferior to those using the geographical weighted
regression model (You et al., 2016) or two-stage spatiotemporal statis-
tical model (Wu et al., 2016). Ignoring the spatial variation of the PM2.5-
AOD relationship is the underlying reason for the slightly lower model
accuracy. However, the main objective of this study was to compare
the capacity of the 3-kmMODIS AOD and 6-kmVIIRS AOD in estimating
ground-level PM2.5 concentrations. Moreover, the spatial variations of
Fig. 7. Boxplot of the residuals.
the estimated PM2.5 can be explained by the spatial variation of the
AOD data. Therefore, themodel accuracy might not be to blame. Never-
theless, in future studies, both the temporal and spatial heterogeneity of
the PM2.5-AOD relationship should be consideredwhen themain goal is
to estimate spatiallyfine ground PM2.5 concentrationswith high accura-
cy using satellite-based models to avoid large biases, especially in large
areas.

5. Conclusions

Themain contribution of this study is that we have revealed the dif-
ferences between the 3-km MODIS AOD and 6-km VIIRS AOD for esti-
mating ground-level PM2.5 concentrations, despite several limitations.
From the perspective of the accuracy and capacity of the model, the
VIIRS models outperform the MODIS model, especially when only
high-quality AODdata are used. From theperspective of annual and sea-
sonal PM2.5 estimates, the VIIRS models provide more estimates closer
to actual levels, especially in winter. Nevertheless, the VIIRS models do
not perform as well as the MODIS model in summer, which should be
considered in future research. The findings of this study indicate that,
for epidemiological or urban studies that require precise PM2.5 esti-
mates, the VIIRS AOD is better, whereas for regional source or transport
studies, the MODIS AOD could still have a role due to its wider spatio-
temporal coverage, especially in summer.
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