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Background:Most studies relying on time-activity diary or traditional air pollutionmodelling approach are insuf-
ficient to suggest the impacts of ignoring individual mobility and air pollution variations on misclassification er-
rors in exposure estimates. Moreover, very few studies have examined whether such impacts differ across
socioeconomic groups.
Objectives:Weaim to examine how ignoring individualmobility and PM2.5 variations producesmisclassification
errors in ambient PM2.5 exposure estimates.
Methods:We developed a geo-informed backward propagation neural network model to estimate hourly PM2.5
concentrations in terms of remote sensing and geospatial big data. Combining the estimated PM2.5 concentra-
tions and individual trajectories derived from 755,468 mobile phone users on a weekday in Shenzhen, China,
we estimated four types of individual total PM2.5 exposures during weekdays at multi-temporal scales. The es-
timate ignoring individual mobility, PM2.5 variations or both was compared with the hypothetical error-free es-
timate using paired sample t-test. We then quantified the exposure misclassification error using Pearson
correlation analysis.Moreover,we examinedwhether themisclassification error differs across different socioeco-
nomic groups. Taking findings of ignoring individual mobility as an example, we further investigated whether
such findings are robust to the different selections of time.
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Results:We found that the estimate ignoring PM2.5 variations, individualmobility or bothwas statistically differ-
ent from the hypothetical error-free estimate. Ignoring both factors produced the largest exposure misclassifica-
tion error. The misclassification error was larger in the estimate ignoring PM2.5 variations than that ignoring
individual mobility. People with high economic status suffered from a larger exposure misclassification error.
The findings were robust to the different selections of time.
Conclusions: Ignoring individual mobility, PM2.5 variations or both leads to misclassification errors in ambient
PM2.5 exposure estimates. A larger misclassification error occurs in the estimate neglecting PM2.5 variations
than that ignoring individual mobility, which is seldom reported before.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Air pollution has attracted considerable concerns from the public
and scholars. An accurate estimate of air pollution exposure is essential
to understand socioeconomic disparities in such exposure and the effect
of air pollution on human health,which thereby supports policymaking
in air pollution regulations and public health interventions. Individual
exposure is determined not only by air pollution variations but also by
individual mobility, thereby increasing the difficulty of generating accu-
rate estimates. Hence, the exposure may be biasedly estimated if the
two determinants are not properly considered. Despite some efforts
(Yoo et al., 2015; Nyhan et al., 2016; Shafran-Nathan et al., 2018), how-
ever, how ignoring air pollution variations and individual mobility pro-
duces misclassification errors in exposure estimates has not been well
understood.

Several studies have highlighted the importance of incorporating in-
dividual mobility and air pollution variations in exposure estimates.
Overall, many studies suggest that ignoring the two aforementioned de-
terminants can produce misclassification errors in exposure estimates
(Nyhan et al., 2016; Tang et al., 2018; Shafran-Nathan et al., 2018;
Tayarani and Rowangould, 2020), whilst few studies report nomisclas-
sification errors (Kwan et al., 2015). In particular, Yoo et al. (2015) re-
ported a substantial difference in exposure estimates when air
pollution variation was not properly captured and respondents spent
much time out of their homes. Similarly, combining the activity data
and hourly NO2 concentrations, Shekarrizfard et al. (2016) found that
the average exposure during mobility is higher than that at home loca-
tion. This finding emphasizes the importance of considering individual
mobility in exposure estimates. By contrast, few studies indicate that in-
corporating individualmobility and air pollution variations has no effect
on improving the accuracy of exposure estimates. In particular, a study
conducted in Franklin County, USA, reported that no significant differ-
ence exists between home- and people-based exposure estimates
(Kwan et al., 2015).

Although findings from the limited studies tend to be consistent, fur-
ther investigations are required due to the following reasons. Firstly, re-
garding the consideration of air pollution variations, the traditional
approaches including land use regression and interpolation may not
well capture the spatiotemporal variations of air pollution concentra-
tion. These methods usually assume a linear relationship between air
pollution concentration and the corresponding predictors (Jerrett
et al., 2005; Setton et al., 2011; Park and Kwan, 2017; Culyba et al.,
2018). However, such relationship is likely to be non-linear (Di et al.,
2016; Li et al., 2017; Zhao et al., 2019), especially when air pollution is
modelled at a fine spatiotemporal scale. Therefore, the traditional
modelling approachesmay not accurately reflect air pollution variations,
which thereby may not be sufficient to demonstrate the significance of
considering air pollution variations in exposure estimates. Although
some studies have used dispersion models (Gerharz et al., 2009; Smith
et al., 2016; Shafran-Nathan et al., 2018; Reis et al., 2018), such model-
ling approaches are usually time-consuming and have a high require-
ment of data input, parameter setting and computing resources.

Secondly, most studies rely on time-activity diary to derive individ-
ual mobility, which may not be sufficient to examine the impact of
ignoring individual mobility on exposure misclassification errors. Indi-
vidual mobility information is usually derived from the time-activity
data that heavily relies on the recall and memory of the respondents
(Buonanno et al., 2014; Smith et al., 2016; Culyba et al., 2018; Tang
et al., 2018). There are also some studies deriving mobility information
from the simulated movement data at the population level (Setton
et al., 2011; Dhondt et al., 2012; Park and Kwan, 2017). Such process-
ing may produce the bias in the characterization of individual mobility
(i.e. information on time, location and activity) that an individual goes
through.

Thirdly, few studies examine the effects of ignoring individual
mobility and air pollution variations across multi-temporal scales.
Most studies focus on the examination at a daily scale (Setton
et al., 2011; Park and Kwan, 2017; Shafran-Nathan et al., 2017;
Tang et al., 2018). One of the problems of single-scale examinations
is temporal uncertainty, that is, the findings may be different when
the impacts of ignoring the determinants of exposure estimates are
examined at different temporal scales. The knowledge on whether
such effects exist at other temporal scales (e.g. weekly) is scarce.
For studies on air pollution-related health effects or socioeconomic
disparities, it is crucial to determine the extent to which the average
concentration at a certain temporal scale can be a proxy of the true
individual exposure. However, such multi-temporal examinations
are limited.

Lastly, only few studies have examined the differential impacts of ig-
noring individual mobility and air pollution variations according to so-
cioeconomic characteristics. Blanchard et al. (2018) suggested that
women residing in themost deprived blocks suffer from larger misclas-
sification errors in exposure estimates. However, such studies are quite
limited. Differential effects can cause differentialmisclassification errors
in exposure estimates across socioeconomic groups, whichwill produce
the bias in the estimate of air pollution effect. However, whether the in-
fluences of disregarding individual mobility and air pollution variations
on exposure misclassification errors vary across different socioeco-
nomic groups is still unclear.

To fill the gaps above, coupling mobile phone location data with a
geo-informed backward propagation neural network model we devel-
oped, this study aims to examine how ignoring individual mobility
and PM2.5 variations produces misclassification errors in ambient
PM2.5 exposure estimates. In addition, this work analysed whether
the impacts of ignoring the two determinants on exposure misclassifi-
cation errors differ amongst peoplewith different economic statuses. Fi-
nally, as the day, week, month, season and year that contain the day of
available mobile phone data were selected for the multi-temporal ex-
aminations, taking the findings of ignoring individual mobility as an ex-
ample, this study tested whether such findings are robust to the
different selections of time.

2. Materials and methods

2.1. Research area

Main built-up areas in Shenzhen are selected as research area in
the present study. Shenzhen, located in the southeast of Guangdong
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Province, China, is one of the four first-tier metropolises in China. It
covers a total area of around 1953 km2 and is home to around 15
million people. Areas in Yantian and Dapeng were excluded in the
present study because these two districts are mostly covered by
mountains. Accordingly, areas in the total of 8 districts were se-
lected. They are Futian, Luohu, and Nanshan, which are downtown
areas. Baoan, Longhua, and Longgang are suburbs, while Guangming
and Pingshan are rural areas. The annual mean PM2.5 concentration in
Shenzhen was 36.39 μg/m3 in 2012, which is more than three times
higher than the value stated in the air quality guidelines of World
Health Organization at 12 μg/m3 (World Health Organization, 2006)
(Fig. 1).
2.2. Data

2.2.1. Mobile phone location data
Mobile phone location dataset on a weekday (March 23, 2012) in

Shenzhen, China, was provided by the largest mobile phone opera-
tor in Shenzhen for academic purposes. The use of this dataset in
the present study has got the ethical approval from the Human Re-
search Ethics Committee, The University of Hong Kong (No.
EA2003008). The initial number of mobile phone users is 12.4 mil-
lion, which represents a considerable proportion of Shenzhen's pop-
ulation (approximately 15 million). Each time-location record in the
dataset contains information: 1) user ID, which has been anony-
mously processed 2) date and time and 3) geospatial locations (i.e.
longitude and latitude coordinates) of the corresponding mobile
phone tower that provides mobile phone services. Time-location in-
formation was continuously recorded at approximately one-hour in-
tervals as long as the mobile phone was active. It should be noted
that the mobile phone location dataset has been encrypted to pro-
tect the privacy of mobile phone users before the permitted use in
the present study.

On the basis of studies using mobile phone data to understand
human behaviour (Järv et al., 2015; Yu et al., 2018), we assume
that a time series of locations of mobile phone towers that a user is
connected to represent the user's movement trajectory (i.e. user's
footprint in space and time). If a mobile phone user was located in
Fig. 1. Resear
the service area (usually represented by the Thiessen polygon) of a
mobile phone tower nearest to the user, then the location of this
tower was recorded in the user's movement trajectory. Hence, the
accuracy of estimated locations of mobile phone users is highly de-
pendent on the service area of mobile phone towers. In our study,
a total of 5908 mobile phone towers are located in the entire city
of Shenzhen. The average service area of mobile phone towers was
0.28 km2 (standard deviation = 0.58 km2).

The dataset we obtained in the present study has been proc-
essed. For more details of data processing, please refer to Zhou
et al. (2018). Briefly, activity locations, namely home and work-
place, were identified in accordance with the place-starting time-
duration model (Long and Thill, 2015). Home location was identi-
fied based on the location records from 0 am to 6 am with time
spent at this location for more than 4 h. In a similar manner, work-
place was identified according to the location records of two pe-
riods (i.e. 8 am–12 am and 2 pm–6 pm) with time spent at this
location for more than 5 h. After processing, there were nearly 1.3
million phone users with continuous and non-continuous 24-hour
location records left. According to the results of validation (Zhou
et al., 2018), there was high agreement in the spatial distributions
of residents derived from mobile phone location data and statistical
data with R2 equal to 0.80. A similar pattern of results can be ob-
served in the spatial distributions of workers (R2 = 0.69). To well
meet the research design for the present study, we derived the loca-
tion records of phone users with the continuous 24-hour location
records, which left the number of mobile phone users by 757,143.
Also, mobile phone users with location records outside Shenzhen
were excluded. We finally acquired 755,468 mobile phone users
for the examination of exposure misclassification errors in the pres-
ent study.
2.2.2. Hourly PM2.5 concentrations derived from Geo-BPNN model
We estimated the hourly PM2.5 concentrations at 1 km2 spatial

resolution from March 9, 2012 to December 31, 2013 using a geo-
informed backward propagation neural network model (i.e. Geo-
BPNN hereinafter). BPNN model is superior in modelling the com-
plex and nonlinear relationships between a number of predictors
ch area.
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and outcome variable (s) (Hecht-Nielsen, 1992). It has been sug-
gested that BPNN has good model performance and thus has been
widely used in PM2.5 estimates (Gupta and Christopher, 2009; Di
et al., 2016; Dong et al., 2020). More details of using Geo-BPNN
model to estimate PM2.5 concentrations can refer to our previous
study (Guo et al., 2020). Briefly, our Geo-BPNN model consists of
an input layer, two hidden layers and an output layer. In the
input layer, there are 27 variables including the gap-filled MAIAC
(i.e. Multi-Angle Implementation of Atmospheric Correction) AOD
(i.e. aerosol optical depth), hourly traffic flow, meteorological fac-
tors, land use indicators, urban form, elevation and spatiotempo-
rally informative terms. The details of filling the gaps in the
original MAIAC AOD can refer to our previous research (Guo et al.,
2020). These variables (Table S1) were selected based on previous
studies (Just et al., 2015; Li et al., 2017; Wei et al., 2019; Yao et al.,
2019).

The number of hidden layers and neurons are two of the most im-
portant parameters influencing the BPNN model performance. Usu-
ally, it is preferable to construct neural network with not too many
hidden layers to avoid the potential model over-fitting problem
(Schalkoff, 1997). According to Fletcher and Goss (1993), the neural
network can perform well if the number of neurons in the hidden
layer ranges from 2

ffiffiffi
n

p þ u
� �

to (2n + 1), where n and u denote the
number of input variable and output variable, respectively (Corre-
sponding values are equal to 27 and 1 in the present study, respec-
tively). Therefore, in this study, we trained six Geo-BPNN models
with different specifications in the number of hidden layer (1 and 2,
respectively) and neurons (40, 45 and 50, respectively) in each layer
in order to determine the best model for PM2.5 estimates
(Table S2). With respect to training algorithm, we selected the
Levenberg-Marquardt algorithm which is robust and has been used
in many studies (Feng et al., 2015; Di et al., 2016; Zhou et al.,
2020). The epochs and learning rate were finally set to 5000 and
0.0001, respectively, based on multiple attempts.

The Geo-BPNN model with 2 hidden layers (each with 45 neu-
rons) was selected for estimating hourly PM2.5 concentrations at 1
km2 grid cells in the present study. We used the sample-based ten-
fold cross-validation which has been widely used in AOD-based
PM2.5 estimate studies (Li et al., 2017; Yao et al., 2019). This can
be briefly described as: 1) We averagely and randomly split the
data into 10 subsets 2) For each subset, we made its predictions
using the model trained from the remaining nine subsets 3) We iter-
ated this process to all subsets and hence obtained a series of data
pairs of PM2.5 observations and predictions 4) We finally did a re-
gression on the data matchups and calculated statistics including
R2 and RMSE (root mean square error). The statistical indicators of
R2 and RMSE were equal to 0.69 and 13.25 μg/m3, respectively, indi-
cating relatively satisfactory PM2.5 estimates. Fig. 2 shows the spa-
tial distributions of the estimated PM2.5 concentrations on March
23, 2012 in Shenzhen.
2.2.3. Housing price as a proxy of economic status
Housing price was used as a proxy of mobile phone user's economic

status. We collected the data of housing price of 6811 residence com-
munities from the Fangtianxia (https://sz.esf.fang.com/), one of the
largest Real Estate Network platform that provides an extensive map-
based search of housing properties. Each housing price record com-
prises information such as the residence community's average housing
price, total housing price and geographic location (i.e. latitude and lon-
gitude coordinates). As inmany studies (Xu et al., 2018; Xu et al., 2019),
we assume that people who live in residence communities with high
average housing prices are more likely to be rich. Hence, we attributed
the average housing price of the residence community nearest to a
phone user's home location to the user as a proxy of the user's economic
status.
2.3. Assessing the four types of individual total exposures at multi-temporal
scales

The four types of individual total exposures include (1) Type 1 esti-
mate (i.e. the hypothetical error-free exposure), which considers the in-
dividual mobility (using hourly activity locations) and spatiotemporal
variations of PM2.5 concentrations (using hourly PM2.5 concentra-
tions); (2) Type 2 estimate, which considers the individual mobility
but not the spatiotemporal variations of PM2.5 concentration (using
the average concentration of residential committee during a period,
e.g. daily average concentration); (3) Type 3 estimate, which considers
the spatiotemporal variations of PM2.5 concentration but not the indi-
vidual mobility (using home locations); (4) Type 4 estimate, which nei-
ther considers the individual mobility nor the spatiotemporal variations
of PM2.5 concentration.

The Type 1 daily total exposure was estimated through combing
the estimated hourly PM2.5 concentrations and hourly mobile phone
location data. The hourly PM2.5 exposure in a certain activity location
of a mobile phone user was extracted from the PM2.5 concentration
map at the corresponding hour. Then, the Type 1 daily total exposure
of a mobile phone user was calculated by summing up the hourly
PM2.5 exposures during the day. The Type 2 daily total exposure was
calculated by adding up the daily average concentrations of the resi-
dential committees where a mobile phone user's activity locations
are located. The Type 3 daily total exposure was calculated by sum-
ming up the estimated hourly PM2.5 concentrations in the home loca-
tion of a mobile phone user. The Type 4 daily total exposure was
calculated by adding up the mean daily concentrations of the residen-
tial committee where a mobile phone user lives in. Assuming that an
individual's daily mobility pattern generally remains constant in a cer-
tain period (especially on weekdays) due to the multiple constraints
(i.e. capacity, coupling and authority constraints) placed on individ-
uals' spatiotemporal behaviours (Ilägcrstrand, 1970), we further calcu-
lated the four types of total PM2.5 exposures during a week, a month, a
season and a year, respectively. We excluded weekends and holidays
in the multi-temporal calculations, because our mobile phone data
source is available on a weekday but individuals' mobility patterns be-
tween weekday and weekend are likely to be different (Liu et al., 2009;
Dewulf et al., 2016; Siła-Nowicka et al., 2016). It should be noted that
the periods selected to calculate the four types of total PM2.5 expo-
sures across multi-temporal scales were the day, week, month, season
and year that contain (or within) the day when mobile phone data is
available. Hence, the examination in the present study may not be ro-
bust to the different selections of time. As a response, a day, week and
month were thereby random selected in accordance with the season to
calculate the Type 1 and Type 3 total exposures in the sensitivity anal-
ysis, with the consideration of the seasonal variation of PM2.5 pollu-
tion (Wang et al., 2014; Li et al., 2017). The Type 1 and Type 3 total
exposures during each of three other seasons were also calculated to
evaluate the robustness of the findings.
2.4. Statistical analysis

Firstly, paired sample t-test was used to determine whether there
are significant differences amongst the four types of exposure estimates.
This is to examine the importance of considering individual mobility
and PM2.5 variations on individual exposure estimates. The level of sta-
tistical significance in paired sample t-test was set to 5%. We compared
the differences between the Type 1 estimate (i.e. hypothetical error-free
exposure) and three other estimates at multi-temporal scales (daily to
annual) instead of the solely examination at a daily scale in most previ-
ous studies (Shekarrizfard et al., 2016; Park and Kwan, 2017; Yu et al.,
2018). The calculation of the four types of exposure estimates and the
selection of the time for themulti-temporal analysis have been specified
in Section 2.3.

https://sz.esf.fang.com/


Fig. 2. Spatial distributions of the estimated PM2.5 concentrations in Shenzhen.
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Secondly, Pearson correlation analysis was used to quantify the ex-
posure misclassification error in terms of the four types of exposure es-
timates. The Pearson correlation coefficient (i.e. correlation coefficient
hereinafter) quantifies the closeness of each of three other estimates
to the Type 1 estimate (i.e. the hypothetical error-free exposure). This
coefficient measures themisclassifications in PM2.5 exposure estimates
if PM2.5 variations (i.e. Type 2 estimate), individual mobility (i.e. Type 3
estimate) or both (i.e. Type 4 estimate) are ignored. The higher the cor-
relation coefficient (ranges from 0 to 1), the smaller the misclassifica-
tion error. We set the level of statistical significance in Pearson
correlation analysis to 5%.
Thirdly, we tested the differential effects of ignoring individual mo-
bility, PM2.5 variations or both on the basis of economic status. One-
way ANOVA was used to determine whether the paired differences be-
tween the Type 1 estimate (i.e. the hypothetical error-free exposure)
and each of the three other types of estimates significantly vary
amongst different economic-status groups. Then, the Pearson correla-
tion coefficients were used to measure the exposure misclassification
error in the low, middle and high economic groups, respectively. This
is to examine which economic-status group exhibits the highest mis-
classification error when individual mobility, PM2.5 variations or both
is ignored in exposure estimates.
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Lastly, we performed the sensitivity analysis. Our examination at
multi-temporal scales may not be robust to the different selections of
time. Therefore, taking the impact of ignoring individual mobility as
an example (Type 1 & Type 3 total exposures), a day, week and month
were further random selected on a seasonal basis considering the sea-
sonal variations of PM2.5 pollution (Wang et al., 2014; Li et al., 2017).
Meanwhile, each of three other seasonswas also selected for the further
examination.

3. Results

3.1. Descriptive analysis

Table 1 presents the summary statistics of the four types of expo-
sure estimates. In general, there were differences between the Type 1
estimate and each of three other estimates at all temporal scales. The
mean value of the total daily exposure of the Type1 estimate was
0.695 × 103 μg/m3, which was slightly lower than that of the Type 3 es-
timate (ignoring individual mobility) but higher than those of the Type
2 (ignoring PM2.5 variations) and Type 4 (ignoring individual mobility
and PM2.5 variations) estimates. With respect to the weekly examina-
tion, the mean value of the total weekly exposure of the Type 1 esti-
mate was 3.803 × 103 μg/m3, which was lower than that of the Type
2, Type 3 or Type 4 estimate. A similar pattern can be observed in
the results at the monthly or seasonal scale. Regarding the annual ex-
amination, as shown in Table 1, the mean value of the total annual ex-
posure of the Type 1 estimate was the highest amongst the four
(288.035 × 103 μg/m3), followed by that of the Type 4, Type 2 and
Type 3 estimates.

3.2. Comparison of exposure estimates

3.2.1. Boxplots of the four types of exposure estimates
The boxplots of the four types of exposure estimates at multi-

temporal scales are displayed in Fig. 3. In general, the median values
of the four types of exposure estimates were close to each other at all
temporal scales, whereas the lengths of boxes (i.e. range between the
first and third quartiles) varied across exposure estimates. As shown
in Fig. 3(a), the length in the Type 3 daily estimate that ignored individ-
ual mobility was 0.346 × 103 μg/m3, which was larger than that in the
Type 1 daily estimate at 0.329 × 103 μg/m3 (i.e. the hypothetical error-
free exposure). The same pattern was observed in the results at the
weekly, monthly or seasonal scale (Fig. 3(b–d)) but not at the annual
scale (Fig. 3(e)).

Moreover, we observed that the length of box was smaller in
the Type 2 estimate that ignored PM2.5 variations than in the
Type 1 estimate at all temporal scales. In particular, the length in
Table 1
Descriptive analysis of the four types of exposure estimates (103 μg/m3).

Daily Weekly Monthly Seasonal Annual

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Type 1 0.695
(0.220)

3.803
(0.896)

15.144
(2.678)

45.765
(8.418)

238.025
(49.427)

Type 2 0.679
(0.194)

3.892
(0.860)

15.413
(2.488)

47.547
(7.833)

222.029
(37.087)

Type 3 0.700
(0.236)

3.822
(1.037)

15.197
(3.161)

46.071
(10.188)

218.474
(46.848)

Type 4 0.683
(0.213)

3.909
(0.981)

15.454
(2.921)

47.726
(9.375)

222.203
(42.222)

Type 1: Consider individual mobility, consider PM2.5 variations. Type 2: Consider individ-
ual mobility, not consider PM2.5 variations. Type 3: Not consider individualmobility, con-
sider PM2.5 variations. Type 4: Not consider individual mobility, not consider PM2.5
variations.
the Type 2 annual estimate was 45.481 × 103 μg/m3, which was
considerably smaller than 66.048 × 103 μg/m3 in the Type 1 annual
estimate (Fig. 3(e)). Furthermore, we found that the lengths be-
tween the minimum and maximum estimates were considerably
larger in the Type 1 and Type 3 estimates than in the Type 2 and
Type 4 estimates. For example, the lengths between the minimum
and maximum estimates in the Type 1 and Type 3 weekly esti-
mates were around 8.661 × 103 μg/m3, which was larger than
8.200 × 103 μg/m3 in the Type 2 and Type 4 weekly estimates
(Fig. 3(b)).

3.2.2. Paired sample t-test to examine whether differences amongst expo-
sure estimates exist

Table 2 presents the results of the paired sample t-test that
assessed the differences amongst the four types of exposure esti-
mates. In general, ignoring individual mobility (i.e. Type 2), PM2.5
variations (i.e. Type 3) or both (i.e. Type 4) led to a statistically sig-
nificant difference amongst the exposure estimates. The Type 2
daily exposure estimated without considering PM2.5 variations
was found to be statistically different from the Type 1 estimate
(i.e. the hypothetical error-free exposure) with p value = 0.000
(Table 2). This result is true for the difference between the Type 1
and Type 2 estimates at a weekly, monthly, seasonal or annual
scale (Table 2).

Significant differences were observed in exposure estimates
with and without the consideration of individual mobility (Type
1 and Type 3 estimates). For example, the annual exposure esti-
mate considering individual mobility (Type 1) was found to be sig-
nificantly different from the annual estimate ignoring such
determinant (Type 3) with p value = 0.000 (Table 2). Regarding
the exposure estimate that ignored individual mobility and
PM2.5 variations simultaneously, such estimate was significantly
different from the Type 1 estimate which considered the two de-
terminants simultaneously at each of the temporal scales
(Table 2).

3.2.3. Pearson correlation analysis to quantify exposure misclassification
errors

Table 3 shows the Pearson correlation analysis to quantify the ex-
posure misclassification error. The Pearson correlation coefficient pro-
vides the information regarding how the exposure estimate ignoring
individual mobility (i.e. Type 2), PM2.5 variations (i.e. Type 3) or
both (i.e. Type 4) was close to the Type 1 estimate (i.e. the hypothet-
ical error-free exposure). Overall, ignoring individual mobility and
PM2.5 variations simultaneously resulted in the largest misclassifica-
tion error in exposure estimate. The correlation coefficient between
the Type 1 and Type 4 daily estimates was 0.732 (p = 0.001), which
was lower than the coefficient of 0.800 (p = 0.001) between the
Type 1 and Type 2 daily estimates or the coefficient of 0.839 (p =
0.001) between the Type 1 and Type 3 daily estimates (Table 3).
Fig. 4(a–c) presents the scatter plots of the Type 1 daily estimate
and three other types of daily estimates. A similar pattern of results
was observed at the weekly, monthly, seasonal or annual scale
(Table 3, Fig. 4(d–o)).

It should be also noted that ignoring PM2.5 variation (i.e. Type
2) produced a larger misclassification error than ignoring individual
mobility (i.e. Type 3). In particular, the correlation coefficient between
the Type 1 and Type 2 seasonal estimates was 0.672 (p = 0.001, Fig. 4
(j)), which was lower than the coefficient of 0.837 between the Type
1 and Type 3 seasonal estimates (p = 0.001, Fig. 4(k)).

3.3. Differences amongst exposure estimates according to economic
status

Fig. 5 exhibits the differences amongst exposure estimates in
accordance with economic status. In general, people with high



Fig. 3. Boxplots of the four types of PM2.5 exposures estimated at multi-temporal scales. Type 1: Consider individual mobility, consider PM2.5 variations; Type 2: Consider
individual mobility, not consider PM2.5 variations; Type 3: Not consider individual mobility, consider PM2.5 variations; Type 4: Not consider individual mobility, not
consider PM2.5 variations.
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economic status showed the lowest correlation between the Type
1 estimate (i.e. the hypothetical error-free exposure) and each of
three other types of estimates. In other words, people living in
Table 2
Paired sample t-test between the error-free estimate and three other types of estimates.

Type 1 & Type 2 Type 1 & Type 3 Type 1 & Type 4

t value p-value t value p-value t value p-value

Daily 105.263 0.000 −31.759 0.000 64.451 0.000
Weekly −129.135 0.000 −32.127 0.000 −124.772 0.000
Monthly −113.621 0.000 −26.098 0.000 −105.658 0.000
Seasonal −234.398 0.000 −47.67 0.000 −206.568 0.000
Annual 381.156 0.000 493.681 0.000 326.339 0.000

Type 1: Consider individual mobility, consider PM2.5 variations. Type 2: Consider individ-
ual mobility, not consider PM2.5 variations. Type 3: Not consider individualmobility, con-
sider PM2.5 variations. Type 4: Not consider individual mobility, not consider PM2.5
variations.
areas with higher residential property prices suffered from a
larger exposure misclassification error. When PM2.5 variations
were ignored, as shown in Fig. 5(a), the difference between the
Table 3
Pearson correlation analysis to quantify misclassification errors in exposure estimates.

Type 1 & Type 2 Type 1 & Type 3 Type 1 & Type 4

Coefficient p-value Coefficient p-value Coefficient p-value

Daily 0.800 0.000 0.839 0.000 0.732 0.000
Weekly 0.771 0.000 0.866 0.000 0.696 0.000
Monthly 0.683 0.000 0.825 0.000 0.588 0.000
Seasonal 0.672 0.000 0.837 0.000 0.575 0.000
Annual 0.679 0.000 0.746 0.000 0.587 0.000

Type 1: Consider individual mobility, consider PM2.5 variations. Type 2: Consider individ-
ual mobility, not consider PM2.5 variations. Type 3: Not consider individual mobility, con-
sider PM2.5 variations. Type 4: Not consider individual mobility, not consider PM2.5
variations.



Fig. 4. Scatter plots of the error-free estimate and three other types of estimates.
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Type 1 and Type 2 daily estimates significantly varied across dif-
ferent economic-status groups (p-trend = 0.000); the correlation
coefficient between the two types of exposure estimates was
0.779 (p = 0.000) in the high economic-status group, which was
lower than 0.794 (p = 0.000) and 0.785 (p = 0.000) in the low
and middle economic-status group, respectively; a similar pattern
was observed in the results of four other temporal scales (Fig. 5
(b–e)).

When individual mobility was ignored (i.e. Type 3), the differ-
ence between the Type 1 (i.e. the hypothetical error-free exposure)
and Type 3 daily estimates significant differed among the three
economic-status groups with p-trend value = 0.000 (Fig. 5(f)); the
correlation coefficients between the Type1 and Type 3 daily esti-
mates were 0.854 (p = 0.000) and 0.831 (p = 0.000) in the low
and middle economic-status groups, respectively, which were
higher than 0.791 (p = 0.000) in the high economic-status group
(Fig. 5(f)); similarly, as shown in Fig. 5(g–j), people with high eco-
nomic status also exhibited the lowest correlation between the
Type 1 and Type 3 estimates at each of four other temporal scales.
When individual mobility and PM2.5 variations were simulta-
neously ignored in exposure estimates (i.e. Type 4), the lowest cor-
relations between the Type 1 and Type 4 estimates at all the
temporal scales were still observed for people with high economic
status (Fig. 5(k–o)).



Fig. 5. Pearson correlation coefficients between the error-free estimate and three other types of estimates in the low, middle and high economic stratums.
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3.4. Sensitivity analysis

The results of the sensitivity analysis of the different selections of
time are shown in Table 4. In general, the findings that ignoring in-
dividual mobility can lead to misclassification errors in exposure es-
timates were not sensitive to the different selections of time.
According to the results of the paired sample t-test, the Type 1
daily estimate (i.e. the hypothetical error-free exposure) was signif-
icantly different from the Type 3 daily estimate (i.e. ignoring indi-
vidual mobility) in each of the random selected days (p ≤ 0.000).
The value of Pearson correlation coefficient (quantify exposure
misclassification errors) ranged from 0.421 to 0.891 (p = 0.001).
Similarly, significant differences between the Type 1 and Type 3 es-
timates were also observed in the random selected weeks and
months and in each of three other seasons.

4. Discussion

4.1. New insights from this study

An accurate estimation of air pollution exposure is essential to inves-
tigate the socioeconomic disparities in air pollution exposure and its



Table 4
Sensitivity analysis of the different selections of time (Type 1 & 3 estimates as example).

p-value
(paired t-test)

Pearson
coefficient

p-value
(paired t-test)

Pearson
coefficient

Day 1 0.000 0.859 Month 1 0.000 0.861
Day 2 0.000 0.874 Month 2 0.000 0.838
Day 3 0.000 0.891 Month 3 0.000 0.830
Day 4 0.000 0.421 Month 4 0.000 0.630
Week 1 0.000 0.896 Spring 0.000 0.837
Week 2 0.000 0.876 Summer 0.000 0.841
Week 3 0.000 0.843 Autumn 0.000 0.668
Week 4 0.000 0.852 Winter 0.000 0.648

Type 1: Consider individual mobility, consider PM2.5 variations. Type 3: Not consider in-
dividual mobility, consider PM2.5 variations.

10 H. Guo et al. / Science of the Total Environment 745 (2020) 141034
effect on human health. Individual mobility and air pollution variation
are the two determinants of exposure estimates. However, how ignor-
ing the two determinants produces misclassification errors in exposure
estimates has not be well understood. In an attempt to remedy the
issue, we coupled mobile phone location data (not call detail records
of mobile phone data) and a machine learning approach to investigate
the effect of ignoring individual mobility, PM2.5 variations or both on
exposure misclassification errors.

We found the robust evidence that the misclassification error is
larger in the estimate ignoring PM2.5 variations than the estimate ig-
noring individual mobility, which is seldom reported before. Usually,
previous studies either emphasize the necessity of considering individ-
ual mobility in exposure estimates (Setton et al., 2011; Buonanno et al.,
2014; Blanchard et al., 2018) or discover that themisclassification error
is larger in the estimate disregarding individual mobility than the esti-
mate that does not consider air pollution variations (Shafran-Nathan
et al., 2018). This suggests that the role of air pollution variations in
the occurrence of exposure misclassification errors receives insufficient
attention. The large misclassification error caused by ignoring air pollu-
tion variations obtained in the present study highlights that air pollu-
tion variations should also be well considered in exposure estimates,
which thereby supports a more accurate estimate of air pollution-
related health effect.

We found that the impact of ignoring PM2.5 variations, individual
mobility or both significantly varies across different economic-status
groups. That is, people with high economic status suffer from a larger
exposure misclassification error. Consequently, ignoring each determi-
nant may result in the differentially misclassified exposure estimates
of socioeconomic subgroups. On the one hand, the differential impacts
of ignoring the determinants on exposure misclassification errors may
distort (or confound) the statistical associations between air pollution
exposure and health outcomes in epidemiological studies. On the
other hand, because some studies reported that people with high eco-
nomic status are disproportionately exposed to air pollution
(Blanchard et al., 2018; Guo et al., 2020), the differential influences
may mask the pattern of the socioeconomic disparities in air pollution
exposure if the exposure of high economic-status group is
underestimated. The findings of the present study highlight that the dif-
ferential effects of ignoring the determinants across socioeconomic
groups should be well considered in exposure estimates to promote
the scientific examination in relation to air pollution.

4.2. Strengths of the present study

This study demonstrates several strengths. Firstly, we combine the
machine learning approach (i.e. Geo-BPNN) and remote sensing data
to estimate PM2.5 concentrations at finer spatial and temporal scales
(hourly at 1 km2 spatial resolution), which can well examine the effect
of ignoring PM2.5 variations. Remote sensing data, which have high
spatiotemporal coverage and resolutions, have been widely used as
the key data input in air pollution modelling. Machine learning has
been widely utilized in air pollution modelling (Di et al., 2016; Li et al.,
2017) because of its ability to model the complex and nonlinear associ-
ations between the predictors (e.g. traffic flow) and the outcome vari-
ables (e.g. PM2.5 concentrations). Such a modelling approach is
superior not only because of its high practicality, but also because of
its effective characterization of air pollution variations at finer spatio-
temporal scales, which to a large extent overcomes the limitations of
the insufficient characterization of air pollution variations in traditional
modelling methods used in previous studies.

Except the Geo-BPNN, we further selected the random forest
(RF) model, i.e. another commonly used machine learning method
in the field of PM2.5-AOD studies (Hu et al., 2017; Wei et al., 2019;
Dong et al., 2020), to estimate PM2.5 concentrations and then com-
pared the four types of exposure estimates. A similar pattern of re-
sults was observed, which indicates that the findings that ignoring
individual mobility, PM2.5 variations or both leads to misclassifica-
tion errors, were robust to PM2.5 estimates from different machine
learning models. More details of the RF model and corresponding
analysis results can be found in the Supplementary Material (i.e.
Text S1, Tables S3 and S4).

Secondly, this study is one of the earliest attempts to use mobile
phone big data (not call detail records) to derive the information on in-
dividual trajectories, which can well suggest the effect of ignoring indi-
vidual mobility on exposure misclassification errors. This dataset opens
up new opportunities for capturing individual mobility. On the one
hand, the high and increasing penetration rate ofmobile phoneusers of-
fers a new large-scale population-representative dataset of individual
mobility. Mobile phone location dataset, which to a large extent can
be a proxy of the entire population, is not limited to a small sample
size or a certain socioeconomic subgroup. Therefore, this dataset is suit-
able to analyze not only the effect of ignoring individual mobility on the
exposure misclassification error, but also the differential effects accord-
ing to socioeconomic characteristics. On the other hand, the continuous
information of geospatial locations on an hourly basis benefits the ex-
amination at multi-temporal scales, which has not been investigated
in previous studies.

4.3. Limitations and prospects

Several limitations and future directions should also be noted.
Firstly, this study does not incorporate other factors that can affect ex-
posure estimates, such as indoor air pollution,window type and infiltra-
tion efficiency in differentmicroenvironments (Tang et al., 2018; Ścibor
et al., 2019), because of the unavailability of such data at present, which
may introduce bias to the estimated individual exposures
(Shekarrizfard et al., 2016; Shafran-Nathan et al., 2017). Secondly, our
mobile phone data source is available only on a weekday. The findings
of this study may not be suitable for weekends or holidays because
there might exist the differences between the weekday and weekend
mobility patterns of individuals (Liu et al., 2009; Dewulf et al., 2016;
Siła-Nowicka et al., 2016).

Thirdly, although PM2.5 concentrations are modelled at the highest
spatial resolution that the current satellite-based approach can access,
similar to previous studies (Yoo et al., 2015; Yu et al., 2018), PM2.5 es-
timates in this study may still be insufficient to capture the spatial var-
iation of PM2.5 pollution, which in turn may still be insufficient to
demonstrate the necessity of considering air pollution variations in ex-
posure estimates. As an alternative, future research can turn to deep
learning approaches for improved PM2.5 estimates. Deep learning is
an advanced machine learning approach capable of comprising multi-
ple processing layers to represent the observed data that involves not
only a number of predictors but also the multiple levels of abstraction.
Thus, a few attempts have used deep learning methods, such as the
deep belief network (Li et al., 2017), to estimate daily PM2.5 concentra-
tions. These studies suggest improved PM2.5 estimates by deep learn-
ing approaches compared to the traditional machine learning
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methods (Li et al., 2017; Sun et al., 2019; Wang and Sun, 2019). Hence,
we are certain that the results in the present study can be enhanced in
terms of the PM2.5 estimates by employing deep learning approaches
in the future.

Fourthly, the findings of the present study are related to the specific-
ity of the study location (i.e. Shenzhen). Shenzhen has its unique char-
acteristics such as urban structure (i.e. polycentric and ribbon urban
form), population distribution pattern and land use layout. These char-
acteristics shape the mobility patterns of residents in Shenzhen, which
may be different from those residing in other Chinese orWestern cities.
However, there does exist the substantial variations of air pollution con-
centrations, which do not depend on the study location. Hence, if indi-
vidual mobility and PM2.5 variations are ignored, there still exist the
misclassification errors in exposure estimates, which may make our
findings suitable elsewhere.

Fifthly, because the accuracy of the estimated locations of themobile
phone users heavily depends on the service area of mobile phone
towers, like prior studies (Silm and Ahas, 2014; Yu et al., 2018), the ac-
curacy of the estimated locations in the present study (the average area
= 0.28 km2) may not be sufficient to illustrate the necessity of consid-
ering individual mobility in exposure estimates. A potential solution is
to install a specially designed application on the respondent's mobile
phone to collect the large-scale location dataset with a high spatial res-
olution (Fan et al., 2015), if the respondent consent is available. Lastly,
the large scale individual-level mobile phone location data, which has
been used to analyze the effect of ignoring individual mobility in the
present study, has been seldom utilized to investigate socioeconomic
disparities in air pollution exposure. Future studies can address this
gap to advance the research on exposure disparity from a location (i.e.
home)-based paradigm to a people-based one.

5. Conclusions

Misclassification errors in exposure estimates occur if individualmo-
bility, air pollution variations or both is ignored. The error produced by
disregarding air pollution variations is larger than that produced by ig-
noring individualmobility. Not only individualmobility but also air pol-
lution variations should be considered in the estimate of individual
exposure to air pollution. Future studies estimating the effect of air pol-
lution exposure on human health should well consider socioeconomic
differences, because such differences can cause uncertainty in health es-
timates through the differential influences of ignoring exposure assess-
ment determinants on exposuremisclassification errors across different
socioeconomic groups.
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